首页> 美国卫生研究院文献>Polymers >Optimization of Glass-Powder-Reinforced Recycled High-Density Polyethylene (rHDPE) Filament for Additive Manufacturing: Transforming Bottle Caps into Sound-Absorbing Material
【2h】

Optimization of Glass-Powder-Reinforced Recycled High-Density Polyethylene (rHDPE) Filament for Additive Manufacturing: Transforming Bottle Caps into Sound-Absorbing Material

机译:用于增材制造的玻璃粉末增强再生高密度聚乙烯 (rHDPE) 细丝的优化:将瓶盖转化为吸音材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Additive manufacturing presents promising potential as a sustainable processing technology, notably through integrating post-consumer recycled polymers into production. This study investigated the recycling of high-density polyethylene (rHDPE) into 3D printing filament, achieved by the following optimal extrusion parameters: 180 °C temperature, 7 rpm speed, and 10% glass powder addition. The properties of the developed rHDPE filament were compared with those of commonly used FDM filaments such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) to benchmark the performance of rHDPE against well-established materials in the 3D printing industry, providing a practical perspective for potential users. The resulting filament boasted an average tensile strength of 25.52 MPa, slightly exceeding ABS (25.41 MPa) and comparable to PLA (28.55 MPa). Despite diameter fluctuations, the filament proved usable in 3D printing. Mechanical tests compared the rHPDE filament 3D printed objects with ABS and PLA, showing lower strength but exceptional ductility and flexibility, along with superior sound absorption. A life cycle analysis underscored the sustainability advantages of rHDPE, reducing environmental impact compared to conventional disposal methods. While rHDPE falls behind in mechanical strength against virgin filaments, its unique attributes and sustainability position it as a valuable option for 3D printing, showcasing recycled materials’ potential in sustainable innovation.
机译:增材制造作为一种可持续加工技术具有广阔的潜力,特别是通过将消费后回收聚合物整合到生产中。本研究调查了将高密度聚乙烯 (rHDPE) 回收成 3D 打印细丝的过程,通过以下最佳挤出参数实现:180 °C 温度、7 rpm 速度和 10% 的玻璃粉添加量。将开发的 rHDPE 线材的性能与丙烯腈丁二烯苯乙烯 (ABS) 和聚乳酸 (PLA) 等常用 FDM 线材的性能进行了比较,以将 rHDPE 的性能与 3D 打印行业中的成熟材料进行比较,为潜在用户提供实用视角。所得细丝的平均拉伸强度为 25.52 MPa,略高于 ABS (25.41 MPa),与 PLA (28.55 MPa) 相当。尽管直径波动,但事实证明,这种细丝可用于 3D 打印。机械测试将 rHPDE 细丝 3D 打印物体与 ABS 和 PLA 进行了比较,显示出较低的强度,但具有出色的延展性和柔韧性,以及出色的吸音性能。生命周期分析强调了 rHDPE 的可持续性优势,与传统处置方法相比,减少了对环境的影响。虽然 rHDPE 在机械强度方面落后于原生细丝,但其独特的特性和可持续性使其成为 3D 打印的宝贵选择,展示了回收材料在可持续创新方面的潜力。

著录项

  • 期刊名称 Polymers
  • 作者单位
  • 年(卷),期 2024(16),16
  • 年度 2024
  • 页码 2324
  • 总页数 22
  • 原文格式 PDF
  • 正文语种
  • 中图分类 分子生物学;
  • 关键词

    机译:增材制造、3D 打印、回收、生命周期分析、熔融沉积建模;
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号