首页> 美国卫生研究院文献>Ecology and Evolution >Evaluating species distribution model predictions through time against paleozoological records
【2h】

Evaluating species distribution model predictions through time against paleozoological records

机译:根据古动物学记录评估物种分布模型随时间的变化预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Species distribution models (SDMs) are widely used to project how species distributions may vary over time, particularly in response climate change. Although the fit of such models to current distributions is regularly enumerated, SDMs are rarely tested across longer time spans to gauge their actual performance under environmental change. Here, we utilise paleozoological presence/absence records to independently assess the predictive accuracy of SDMs through time. To illustrate the approach, we focused on modelling the Holocene distribution of the hartebeest, Alcelaphus buselaphus, a widespread savannah‐adapted African antelope. We applied various modelling algorithms to three occurrence datasets, including a point dataset from online repositories and two range maps representing current and ‘natural’ (i.e. hypothetical assuming no human impact) distributions. We compared conventional model evaluation metrics which assess fit to current distributions (i.e. True Skill Statistic, TSSc, and Area Under the Curve, AUCc) to analogous ‘paleometrics’ for past distributions (i.e. TSSp, AUCp, and in addition Boycep, F2‐scorep and Sorensenp). Our findings reveal only a weak correlation between the ranking of conventional metrics and paleometrics, suggesting that the models most effectively capturing present‐day distributions may not be the most reliable to hindcast historical distributions, and that the choice of input data and modelling algorithm both significantly influences environmental suitability predictions and SDM performance. We thus advocate assessment of model performance using paleometrics, particularly those capturing the correct prediction of presences, such as F2‐scorep or Sorensenp, due to the potential unreliability of absence data in paleozoological records. By integrating archaeological and paleontological records into the assessment of alternative models' ability to project shifts in species distributions over time, we are likely to enhance our understanding of environmental constraints on species distributions.
机译:物种分布模型 (SDM) 广泛用于预测物种分布如何随时间变化,尤其是在响应气候变化方面。尽管定期列举此类模型与当前分布的拟合度,但很少在较长的时间跨度内测试 SDM 以衡量它们在环境变化下的实际性能。在这里,我们利用古动物学存在/不存在记录来独立评估 SDM 随时间变化的预测准确性。为了说明这种方法,我们专注于对大羚羊 Alcelaphus buselaphus 的全新世分布进行建模,Alcelaphus buselaphus 是一种广泛分布的适应热带草原的非洲羚羊。我们将各种建模算法应用于三个occurrence数据集,包括一个来自在线存储库的点数据集和两个代表当前和“自然”(即假设没有人类影响)分布的范围图。我们将评估适合当前分布的常规模型评估指标(即 True Skill Statistic、TSSc 和曲线下面积、AUCc)与过去分布的类似“古计量学”(即 TSSp、AUCp,以及 Boycep、F2-scorep 和 Sorensenp)进行了比较。我们的研究结果仅显示了传统指标和古计量学排名之间的微弱相关性,这表明最有效地捕捉当前分布的模型可能不是最可靠的后报历史分布,并且输入数据和建模算法的选择都会显着影响环境适宜性预测和 SDM 性能。因此,我们提倡使用古计量学评估模型性能,特别是那些捕捉正确存在预测的模型,例如 F2-scorep 或 Sorensenp,因为古动物学记录中不存在数据可能不可靠。通过将考古学和古生物学记录整合到对替代模型预测物种分布随时间变化的能力的评估中,我们可能会增强对物种分布的环境限制的理解。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号