首页> 美国卫生研究院文献>Polymers >An Experimental Study on the Thermomechanical Coupling Effects of Carbon-Fiber-Reinforced Polyetheretherketone under Dynamic Impact
【2h】

An Experimental Study on the Thermomechanical Coupling Effects of Carbon-Fiber-Reinforced Polyetheretherketone under Dynamic Impact

机译:碳纤维增强聚醚醚酮在动态冲击作用下的热机械耦合效应实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Carbon-fiber-reinforced polyetheretherketone (CF/PEEK) composites are widely utilized in aerospace, medical devices, and automotive industries, renowned for their superior mechanical properties and high-temperature resistance. Despite these advantages, the thermomechanical coupling behavior of CF/PEEK under dynamic loading conditions is not well understood. This study aims to explore the thermomechanical coupling effects of CF/PEEK at elevated strain rates, employing Hopkinson bar impact tests and scanning electron microscopy (SEM) for detailed characterization. Our findings indicate that an increase in temperature led to significant reductions in the yield strength, peak stress, and specific energy absorption of CF/PEEK, while fracture strain had no significant effect. For instance, at 200 °C, the yield strength, peak stress, and specific energy absorption decreased by 39%, 37%, and 38%, respectively, compared to their values at 20 °C. Furthermore, as the strain rate increased, the yield strength, peak stress, specific energy absorption, and fracture strain all exhibited strain-hardening effects. However, as the strain rate further increased, above 4000 s−1, the enhancing effect of the strain rate on the yield strength and peak stress gradually diminished. The interaction of the temperature and strain rate significantly affected the mechanical performance of CF/PEEK under high-speed impact conditions. While the strain rate generally enhanced these properties, the strain-hardening effect on the yield strength weakened as the temperature increased, and both the temperature and strain rate contributed to the increase in specific energy absorption. Microdamage mechanism analysis revealed that interface debonding and sliding between the fibers and the matrix were more pronounced under static compression than under dynamic compression, thereby diminishing the efficiency of stress transfer. Additionally, higher temperatures caused the PEEK matrix to soften and exhibit increased viscoelastic behavior, which in turn affected the material’s toughness and the mechanisms of stress transfer. These insights hold substantial engineering significance, particularly for the optimization of CF/PEEK composite design and applications in extreme environments.
机译:碳纤维增强聚醚醚酮 (CF/PEEK) 复合材料以其卓越的机械性能和耐高温性而闻名,广泛用于航空航天、医疗设备和汽车行业。尽管有这些优点,但 CF/PEEK 在动态载荷条件下的热机械耦合行为尚不清楚。本研究旨在探索 CF/PEEK 在高应变速率下的热机械耦合效应,采用霍普金森杆冲击测试和扫描电子显微镜 (SEM) 进行详细表征。我们的研究结果表明,温度升高导致 CF/PEEK 的屈服强度、峰值应力和比能量吸收显著降低,而断裂应变没有显着影响。例如,与 20 °C 时的值相比,在 200 °C 时,屈服强度、峰值应力和比能量吸收分别降低了 39%、37% 和 38%。 此外,随着应变速率的增加,屈服强度、峰值应力、比能量吸收和断裂应变均表现出应变硬化效应。然而,随着应变速率的进一步增加,在 4000 s−1 以上,应变速率对屈服强度和峰值应力的增强作用逐渐减弱。温度和应变速率的交互作用显著影响了 CF/PEEK 在高速冲击条件下的力学性能。虽然应变速率通常增强了这些性能,但应变硬化对屈服强度的影响随着温度的升高而减弱,温度和应变速率都有助于比能量吸收的增加。微损伤机理分析表明,在静态压缩下,纤维与基体之间的界面脱粘和滑动比在动态压缩下更明显,从而降低了应力传递的效率。此外,较高的温度会导致 PEEK 基体软化并表现出增加的粘弹性行为,这反过来又影响了材料的韧性和应力传递机制。这些见解具有重要的工程意义,特别是对于极端环境中 CF/PEEK 复合材料设计和应用的优化。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号