首页> 美国卫生研究院文献>Oncology Letters >Predictive value of multiple imaging predictive models for spread through air spaces of lung adenocarcinoma: A systematic review and network meta‑analysis
【2h】

Predictive value of multiple imaging predictive models for spread through air spaces of lung adenocarcinoma: A systematic review and network meta‑analysis

机译:多种影像学预测模型对肺腺癌气腔扩散的预测价值:系统评价和网状Meta分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spread Through Air Spaces (STAS) is involved in lung adenocarcinoma (LUAD) recurrence, where cancer cells spread into adjacent lung tissue, impacting surgical planning and prognosis assessment. Radiomics-based models show promise in predicting STAS preoperatively, enhancing surgical precision and prognostic evaluations. The present study performed network meta-analysis to assess the predictive efficacy of imaging models for STAS in LUAD. Data were systematically sourced from PubMed, Embase, Scopus, Wiley and Web of Science, according to the Cochrane Handbook for Systematic Reviews of Interventions) and A Measurement Tool to Assess systematic Reviews 2. Using Stata software v17.0 for meta-analysis, surface under the cumulative ranking area (SUCRA) was applied to identify the most effective diagnostic method. Quality assessments were performed using Cochrane Collaboration's risk-of-bias tool and publication bias was assessed using Deeks' funnel plot. The analysis encompassed 14 articles, involving 3,734 patients, and assessed 17 predictive models for STAS in LUAD. According to comprehensive analysis of SUCRA, the machine learning (ML)_Peri_tumour model had the highest accuracy (56.5), the Features_computed tomography (CT) model had the highest sensitivity (51.9) and the positron emission tomography (pet)_CT model had the highest specificity (53.9). ML_Peri_tumour model had the highest predictive performance. The accuracy was as follows: ML_Peri_tumour vs. Features_CT [relative risk (RR)=1.14; 95% confidence interval (CI), 0.99–1.32]; ML_Peri_tumour vs. ML_Tumour (RR=1.04; 95% CI, 0.83–1.30) and ML_Peri_tumour vs. pet_CT (RR=1.04; 95% CI, 0.84–1.29). Comparative analyses revealed heightened predictive accuracy of the ML_Peri_tumour compared with other models. Nonetheless, the field of radiological feature analysis for STAS prediction remains nascent, necessitating improvements in technical reproducibility and comprehensive model evaluation.
机译:通过空气空间传播 (STAS) 与肺腺癌 (LUAD) 复发有关,其中癌细胞扩散到邻近的肺组织,影响手术计划和预后评估。基于影像组学的模型在术前预测 STAS、提高手术精度和预后评估方面显示出前景。本研究进行网络荟萃分析,以评估成像模型对 LUAD 中 STAS 的预测效果。根据 Cochrane 干预系统评价手册)和评估系统评价的测量工具 2,数据系统地来源于 PubMed、Embase、Scopus、Wiley 和 Web of Science。使用 Stata 软件 v17.0 进行荟萃分析,应用累积排名区域下的表面 (SUCRA) 来确定最有效的诊断方法。使用 Cochrane 协作网的偏倚风险工具进行质量评估,使用 Deeks 漏斗图评估发表偏倚。该分析包括 14 篇文章,涉及 3,734 名患者,并评估了 LUAD 中 STAS 的 17 种预测模型。根据对 SUCRA 的综合分析,机器学习 (ML) _Peri_tumour 模型的准确性最高 (56.5),Features_computed 层析成像 (CT) 模型的敏感性最高 (51.9),正电子发射断层扫描 (PET)_CT 模型的特异性最高 (53.9)。ML_Peri_tumour模型具有最高的预测性能。准确性如下:ML_Peri_tumour 与Features_CT [相对风险 (RR)=1.14;95% 置信区间 (CI),0.99–1.32];ML_Peri_tumour vs. ML_Tumour (RR=1.04;95% CI, 0.83–1.30) 和 ML_Peri_tumour vs. pet_CT (RR=1.04;95% CI, 0.84–1.29)。比较分析显示,与其他模型相比,ML_Peri_tumour的预测准确性更高。尽管如此,用于 STAS 预测的放射学特征分析领域仍处于起步阶段,需要改进技术重现性和综合模型评估。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号