首页> 美国卫生研究院文献>Journal of Personalized Medicine >Prediction of Failure to Progress after Labor Induction: A Multivariable Model Using Pelvic Ultrasound and Clinical Data
【2h】

Prediction of Failure to Progress after Labor Induction: A Multivariable Model Using Pelvic Ultrasound and Clinical Data

机译:引产后进展失败预测:使用盆腔超声和临床数据的多变量模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: Labor induction is one of the leading causes of obstetric admission. This study aimed to create a simple model for predicting failure to progress after labor induction using pelvic ultrasound and clinical data. Material and Methods: A group of 387 singleton pregnant women at term with unruptured amniotic membranes admitted for labor induction were included in an observational prospective study. Clinical and ultrasonographic variables were collected at admission prior to the onset of contractions, and labor data were collected after delivery. Multivariable logistic regression analysis was applied to create several models to predict cesarean section due to failure to progress. Afterward, the most accurate and reproducible model was selected according to the lowest Akaike Information Criteria (AIC) with a high area under the curve (AUC). Results: Plausible parameters for explaining failure to progress were initially obtained from univariable analysis. With them, several multivariable analyses were evaluated. Those parameters with the highest reproducibility included maternal age (p < 0.05), parity (p < 0.0001), fetal gender (p < 0.05), EFW centile (p < 0.01), cervical length (p < 0.01), and posterior occiput position (p < 0.001), but the angle of descent was disregarded. This model obtained an AIC of 318.3 and an AUC of 0.81 (95% CI 0.76–0.86, p < 0.0001) with detection rates of 24% and 37% for FPRs of 5% and 10%. Conclusions: A simplified clinical and sonographic model may guide the management of pregnancies undergoing labor induction, favoring individualized patient management.
机译:目的: 引产是产科入院的主要原因之一。本研究旨在创建一个简单的模型,用于使用盆腔超声和临床数据预测引产后进展失败。材料和方法: 一组 387 例羊膜未破裂的足月单胎孕妇被纳入一项观察性前瞻性研究。在宫缩开始前收集入院时的临床和超声变量,并在分娩后收集分娩数据。应用多变量 logistic 回归分析创建多个模型来预测由于进展失败而导致的剖宫产。之后,根据具有较高曲线下面积 (AUC) 的最低 Akaike 信息标准 (AIC) 选择最准确和可重复的模型。结果:解释进展失败的合理参数最初是从单变量分析中获得的。通过它们,评估了几个多变量分析。那些具有最高可重复性的参数包括产妇年龄 (p < 0.05)、胎次 (p < 0.0001)、胎儿性别 (p < 0.05)、EFW 百分位数 (p < 0.01)、宫颈长度 (p < 0.01) 和枕后位置 (p < 0.001),但下降角度被忽略。该模型的 AIC 为 318.3,AUC 为 0.81 (95% CI 0.76–0.86,p < 0.0001),FPR 为 5% 和 10% 的检出率分别为 24% 和 37%。结论: 简化的临床和超声模型可以指导引产妊娠的管理,有利于个体化患者管理。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号