首页> 美国卫生研究院文献>Journal of Personalized Medicine >Lowering Barriers to Health Risk Assessments in Promoting Personalized Health Management
【2h】

Lowering Barriers to Health Risk Assessments in Promoting Personalized Health Management

机译:降低健康风险评估的障碍 促进个人化健康管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study investigates the feasibility of accurately predicting adverse health events without relying on costly data acquisition methods, such as laboratory tests, in the era of shifting healthcare paradigms towards community-based health promotion and personalized preventive healthcare through individual health risk assessments (HRAs). We assessed the incremental predictive value of four categories of predictor variables—demographic, lifestyle and family history, personal health device, and laboratory data—organized by data acquisition costs in the prediction of the risks of mortality and five chronic diseases. Machine learning methodologies were employed to develop risk prediction models, assess their predictive performance, and determine feature importance. Using data from the National Sample Cohort of the Korean National Health Insurance Service (NHIS), which includes eligibility, medical check-up, healthcare utilization, and mortality data from 2002 to 2019, our study involved 425,148 NHIS members who underwent medical check-ups between 2009 and 2012. Models using demographic, lifestyle, family history, and personal health device data, with or without laboratory data, showed comparable performance. A feature importance analysis in models excluding laboratory data highlighted modifiable lifestyle factors, which are a superior set of variables for developing health guidelines. Our findings support the practicality of precise HRAs using demographic, lifestyle, family history, and personal health device data. This approach addresses HRA barriers, particularly for healthy individuals, by eliminating the need for costly and inconvenient laboratory data collection, advancing accessible preventive health management strategies.
机译:本研究调查了在医疗保健范式转向通过个人健康风险评估 (HRA) 以社区为基础的健康促进和个性化预防性医疗保健的时代,在不依赖昂贵的数据采集方法(例如实验室测试)的情况下准确预测不良健康事件的可行性。我们评估了四类预测变量的增量预测价值——人口统计学、生活方式和家族史、个人健康设备和实验室数据——在预测死亡和五种慢性病的风险时,按数据采集成本组织。采用机器学习方法来开发风险预测模型,评估其预测性能,并确定特征重要性。使用来自韩国国民健康保险服务 (NHIS) 国家样本队列的数据,其中包括 2002 年至 2019 年的资格、体检、医疗保健利用和死亡率数据,我们的研究涉及 425,148 名 NHIS 成员,他们在 2009 年至 2012 年期间接受了体检。使用人口统计学、生活方式、家族史和个人健康设备数据的模型,有或没有实验室数据,显示出相当的性能。排除实验室数据的模型中的特征重要性分析突出了可改变的生活方式因素,这些因素是制定健康指南的一组高级变量。我们的研究结果支持使用人口统计学、生活方式、家族史和个人健康设备数据进行精确 HRA 的实用性。这种方法通过消除昂贵且不方便的实验室数据收集需求,推进可及的预防性健康管理策略,解决了 HRA 障碍,特别是对于健康个体。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号