首页> 美国卫生研究院文献>Nucleic Acids Research >Comprehensive genomic features indicative for Notch responsiveness
【2h】

Comprehensive genomic features indicative for Notch responsiveness

机译:指示 Notch 响应性的全面基因组特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Transcription factor RBPJ is the central component in Notch signal transduction and directly forms a coactivator complex together with the Notch intracellular domain (NICD). While RBPJ protein levels remain constant in most tissues, dynamic expression of Notch target genes varies depending on the given cell-type and the Notch activity state. To elucidate dynamic RBPJ binding genome-wide, we investigated RBPJ occupancy by ChIP-Seq. Surprisingly, only a small set of the total RBPJ sites show a dynamic binding behavior in response to Notch signaling. Compared to static RBPJ sites, dynamic sites differ in regard to their chromatin state, binding strength and enhancer positioning. Dynamic RBPJ sites are predominantly located distal to transcriptional start sites (TSSs), while most static sites are found in promoter-proximal regions. Importantly, gene responsiveness is preferentially associated with dynamic RBPJ binding sites and this static and dynamic binding behavior is repeatedly observed across different cell types and species. Based on the above findings we used a machine-learning algorithm to predict Notch responsiveness with high confidence in different cellular contexts. Our results strongly support the notion that the combination of binding strength and enhancer positioning are indicative of Notch responsiveness.
机译:转录因子 RBPJ 是 Notch 信号转导的核心组分,直接与 Notch 胞内结构域 (NICD) 形成共激活因子复合物。虽然 RBPJ 蛋白水平在大多数组织中保持不变,但 Notch 靶基因的动态表达根据给定的细胞类型和 Notch 活性状态而变化。为了阐明全基因组动态 RBPJ 结合,我们研究了 ChIP-Seq 的 RBPJ 占有率。令人惊讶的是,在总 RBPJ 位点中,只有一小部分显示出响应 Notch 信号转导的动态结合行为。与静态 RBPJ 位点相比,动态位点在染色质状态、结合强度和增强子定位方面有所不同。动态 RBPJ 位点主要位于转录起始位点 (TSS) 的远端,而大多数静态位点位于启动子近端区域。重要的是,基因反应性优先与动态 RBPJ 结合位点相关,并且这种静态和动态结合行为在不同细胞类型和物种中反复观察到。基于上述发现,我们使用机器学习算法来预测 Notch 反应性,在不同细胞环境中具有高置信度。我们的结果强烈支持结合强度和增强子定位的组合表明 Notch 反应性的观点。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号