首页> 美国卫生研究院文献>Nucleic Acids Research >NetActivity enhances transcriptional signals by combining gene expression into robust gene set activity scores through interpretable autoencoders
【2h】

NetActivity enhances transcriptional signals by combining gene expression into robust gene set activity scores through interpretable autoencoders

机译:NetActivity 通过可解释的自动编码器将基因表达结合到稳健的基因集活性评分中从而增强转录信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Grouping gene expression into gene set activity scores (GSAS) provides better biological insights than studying individual genes. However, existing gene set projection methods cannot return representative, robust, and interpretable GSAS. We developed NetActivity, a machine learning framework that generates GSAS based on a sparsely-connected autoencoder, where each neuron in the inner layer represents a gene set. We proposed a three-tier training that yielded representative, robust, and interpretable GSAS. NetActivity model was trained with 1518 GO biological processes terms and KEGG pathways and all GTEx samples. NetActivity generates GSAS robust to the initialization parameters and representative of the original transcriptome, and assigned higher importance to more biologically relevant genes. Moreover, NetActivity returns GSAS with a more consistent definition and higher interpretability than GSVA and hipathia, state-of-the-art gene set projection methods. Finally, NetActivity enables combining bulk RNA-seq and microarray datasets in a meta-analysis of prostate cancer progression, highlighting gene sets related to cell division, key for disease progression. When applied to metastatic prostate cancer, gene sets associated with cancer progression were also altered due to drug resistance, while a classical enrichment analysis identified gene sets irrelevant to the phenotype. NetActivity is publicly available in Bioconductor and GitHub.
机译:将基因表达分组到基因集活性评分 (GSAS) 中比研究单个基因提供更好的生物学见解。然而,现有的基因集投影方法无法返回具有代表性、稳健性和可解释性的 GSAS。我们开发了 NetActivity,这是一个机器学习框架,它基于稀疏连接的自动编码器生成 GSAS,其中内层中的每个神经元都代表一个基因集。我们提出了一个三层训练,产生了具有代表性、稳健性和可解释性的 GSAS。NetActivity 模型使用 1518 个 GO 生物过程项和 KEGG 通路以及所有 GTEx 样本进行训练。NetActivity 产生对初始化参数具有鲁棒性并代表原始转录组的 GSAS,并赋予生物学相关性更高的基因更高的重要性。此外,NetActivity 返回的 GSAS 比 GSVA 和 hipathia(最先进的基因集投影方法)具有更一致的定义和更高的可解释性。最后,NetActivity 能够在前列腺癌进展的荟萃分析中结合大量 RNA-seq 和微阵列数据集,突出与细胞分裂相关的基因集,这是疾病进展的关键。当应用于转移性前列腺癌时,与癌症进展相关的基因集也因耐药性而发生改变,而经典的富集分析确定了与表型无关的基因集。NetActivity 在 Bioconductor 和 GitHub 中公开提供。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号