首页> 美国卫生研究院文献>Journal of Clinical and Translational Science >11 Novel Systematic Method for Identifying Congenital Anomaly Cases in Electronic Health Record Databases
【2h】

11 Novel Systematic Method for Identifying Congenital Anomaly Cases in Electronic Health Record Databases

机译:11 在电子健康记录数据库中识别先天性异常病例的新型系统方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

OBJECTIVES/GOALS: Congenital anomalies (CAs) affect 3% of live births, yet the cause of 80% of CAs is unknown and for the 20% with an identified cause, variability in penetrance suggests additional risk drivers exist. Our method for identifying and categorizing CAs in electronic health record (EHR) linked biobank databases can expand and improve CA etiologic research. METHODS/STUDY POPULATION: We identified individuals with CAs in three groups: 1. Those with at least one CA 2. Those with multiple CAs (MCA), those with two or more ‘major’ CAs, and 3. Those with CAs in a specific organ system. We also created a novel quantitative approach, using phenome-wide association studies (pheWAS), for determining CA-associated genetic disease billing codes in order to separate individuals that have a known genetic cause for their CAs from those with idiopathic CAs. We updated CA phecodes, aggregates of clinical billing codes, which we used to identify CA cases in Vanderbilt’s EHR-linked biobank database, BioVU. We create a new phecode, ‘All CAs’, for researchers to quickly identify all individuals with at least one CA. We evaluate the definition of MCA using pheWAS analyses to compare ‘minor’ vs ‘major’ CA. RESULTS/ANTICIPATED RESULTS: The new CA phecode nomenclature includes 5.8 times more codes for CAs compared with the previous version (365 vs 56), improving granularity. 85 (19.7%) CA-associated genetic disease billing codes were identified through literature review. PheWAS analyses revealed an additional 16 (3.7%) genetic disease billing codes with one or more significant (p< 2.75 x10-5) association with CA-related phecodes. Identifying CA-associated genetic disease billing codes allows researchers to differentiate between idiopathic CAs and those that have a known genetic cause. PheWAS analyses of individuals with previously considered “minor” CAs showed many associated severe health problems, revealing that the differentiation between “minor” vs “major” CAs when identifying individuals with MCA in the EHR is arbitrary. DISCUSSION/SIGNIFICANCE: Our CA identification method is scalable for the growing number of EHR-linked biobanks. Differentiating between idiopathic CAs from those with known causes will increase power in studies discovering additional genetic drivers of CAs. Our novel method allows for expansion and acceleration of CA epidemiological research in EHR-linked biobank data.
机译:目标/目标: 先天性异常 (CA) 影响 3% 的活产婴儿,但 80% 的 CA 的原因尚不清楚,对于 20% 的已确定原因,外显率的变异性表明存在额外的风险驱动因素。我们在电子健康记录 (EHR) 链接生物样本库数据库中识别和分类 CA 的方法可以扩展和改进 CA 病因学研究。方法/研究人群: 我们将 CA 个体分为三组: 1. 至少有一个 CA 的人 2.具有多个 CA (MCA) 的用户、具有两个或多个“主要”CA 的用户,以及 3.那些在特定器官系统中具有 CA 的人。我们还创建了一种新的定量方法,使用表型组范围关联研究 (pheWAS) 来确定 CA 相关的遗传疾病计费代码,以便将具有已知 CA 遗传原因的个体与特发性 CA 的个体区分开来。我们更新了 CA 表码,即临床计费代码的汇总,我们用它来识别范德比尔特的 EHR 链接生物库数据库 BioVU 中的 CA 病例。我们创建了一个新的phecode,'All CAs',供研究人员快速识别至少具有一个 CA 的所有个体。我们使用 pheWAS 分析评估 MCA 的定义,以比较“次要”与“主要”CA。结果/预期结果:与以前版本相比,新的 CA phecode 命名法包括 5.8 倍的 CA 代码(365 对 56),从而提高了粒度。通过文献综述确定了 85 个 (19.7%) CA 相关遗传病计费代码。PheWAS 分析显示,另外 16 个 (3.7%) 遗传疾病计费代码与 CA 相关 phecode 具有一个或多个重要的 (p< 2.75 x10-5) 关联。识别 CA 相关的遗传病计费代码使研究人员能够区分特发性 CA 和具有已知遗传原因的 CA。对以前被认为具有“次要”CA 的个体的 PheWAS 分析表明,许多相关的严重健康问题,表明在 EHR 中识别患有 MCA 的个体时,“次要”与“主要”CA 之间的区别是任意的。讨论/意义: 我们的 CA 识别方法可针对越来越多的 EHR 相关生物样本库进行扩展。区分特发性 CA 与已知原因的 CA 将增加发现 CA 其他遗传驱动因素的研究的把握度。我们的新方法可以扩展和加速 EHR 相关生物库数据中的 CA 流行病学研究。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号