首页> 美国卫生研究院文献>Science Advances >Spatiotemporal audio feature extraction with dynamic memristor-based time-surface neurons
【2h】

Spatiotemporal audio feature extraction with dynamic memristor-based time-surface neurons

机译:使用基于动态忆阻器的时间表面神经元进行时空音频特征提取

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuromorphic speech recognition systems that use spiking neural networks (SNNs) and memristors are progressing in hardware development. The conventional manual preprocessing of audio signals is shifting toward event-based recognition with convolutional SNNs. Despite achieving high accuracy in classification, the efficient extraction of spatiotemporal features from audio events continues to be a substantial challenge. In this study, we introduce dynamic time-surface neurons (DTSNs) using volatile memristors featuring an adjustable temporal kernel decay, enabled by series-connected transistors with an Au/LiCoO2/Au configuration. DTSNs act as feature descriptors, enhancing the spatiotemporal feature extraction from event audio data. A two-layer SNN classifier, fully connected and incorporating a 1T1R nonvolatile memristor array, is trained to recognize the spatiotemporal features of the audio data. Our findings show classification accuracies of up to 95.91%, substantial improvements in computational efficiency, and increased noise resilience, confirming the promise of our memristor-based speech recognition system for practical applications.
机译:使用脉冲神经网络 (SNN) 和忆阻器的神经形态语音识别系统正在硬件开发中取得进展。传统的音频信号手动预处理正在转向使用卷积 SNN 进行基于事件的识别。尽管在分类方面实现了很高的准确性,但从音频事件中有效提取时空特征仍然是一个重大挑战。在这项研究中,我们引入了使用易失性忆阻器的动态时间表面神经元 (DTSN),该忆阻器具有可调节的时间核衰减,由具有 Au/LiCoO2/Au 配置的串联晶体管实现。DTSN 充当特征描述符,增强了从事件音频数据中提取时空特征的能力。一个两层 SNN 分类器,完全连接并包含一个 1T1R 非易失忆阻器阵列,经过训练以识别音频数据的时空特征。我们的研究结果表明,分类精度高达 95.91%,计算效率显著提高,噪声弹性增强,证实了我们基于忆阻器的语音识别系统在实际应用中的前景。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号