首页> 美国卫生研究院文献>Science Advances >Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission
【2h】

Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission

机译:光子无监督学习变分自动编码器用于高吞吐量和低延迟图像传输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Following the explosive growth of global data, there is an ever-increasing demand for high-throughput processing in image transmission systems. However, existing methods mainly rely on electronic circuits, which severely limits the transmission throughput. Here, we propose an end-to-end all-optical variational autoencoder, named photonic encoder-decoder (PED), which maps the physical system of image transmission into an optical generative neural network. By modeling the transmission noises as the variation in optical latent space, the PED establishes a large-scale high-throughput unsupervised optical computing framework that integrates main computations in image transmission, including compression, encryption, and error correction to the optical domain. It reduces the system latency of computation by more than four orders of magnitude compared with the state-of-the-art devices and transmission error ratio by 57% than on-off keying. Our work points to the direction for a wide range of artificial intelligence–based physical system designs and next-generation communications.
机译:随着全球数据的爆炸式增长,图像传输系统中对高吞吐量处理的需求不断增长。然而,现有的方法主要依赖于电子电路,这严重限制了传输吞吐量。在这里,我们提出了一种端到端的全光变分自动编码器,称为光子编码器-解码器(PED),它将图像传输的物理系统映射到光生成神经网络中。通过将传输噪声建模为光潜在空间的变化,PED 建立了一个大规模、高吞吐量的无监督光计算框架,该框架集成了图像传输中的主要计算,包括对光域的压缩、加密和纠错。与最先进的设备相比,它将计算的系统延迟降低了四个数量级以上,并且传输误差率比开关键控降低了 57%。我们的工作为各种基于人工智能的物理系统设计和下一代通信指明了方向。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号