首页> 美国卫生研究院文献>ACS Omega >First-Principles-Based Insight into Electrochemical Reactivity in a Cobalt-Carbonate-Hydroxide Pseudocapacitor
【2h】

First-Principles-Based Insight into Electrochemical Reactivity in a Cobalt-Carbonate-Hydroxide Pseudocapacitor

机译:基于第一性原理的碳酸钴氢氧化物伪电容器中电化学反应性的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cobalt carbonate hydroxide (CCH) is a pseudocapacitive material with remarkably high capacitance and cycle stability. Previously, it was reported that CCH pseudocapacitive materials are orthorhombic in nature. Recent structural characterization has revealed that they are hexagonal in nature; however, their H positions still remain unclear. In this work, we carried out first-principles simulations to identify the H positions. We then considered various fundamental deprotonation reactions inside the crystal and computationally evaluated the electromotive forces (EMF) of deprotonation (Vdp). Compared with the experimental potential window of the reaction (<0.6 V (vs saturated calomel electrode (SCE)), the computed Vdp (vs SCE) value (3.05 V) was beyond the potential window, indicating that deprotonation never occurred inside the crystal. This may be attributed to the strong hydrogen bonds (H-bonds) that formed in the crystal, leading to structural stabilization. We further investigated the crystal anisotropy in an actual capacitive material by considering the growth mechanism of the CCH crystal. By associating our X-ray diffraction (XRD) peak simulations with experimental structural analysis, we found that the H-bonds formed between CCH planes (approximately parallel to the ab-plane) can result in 1-D growth (stacked along the c-axis). This anisotropic growth controls the balance between the total “non-reactive” CCH phases (inside the material) and the “reactive” hydroxide (Co(OH)2) phases (surface layers); the former stabilizes the structure, whereas the latter contributes to the electrochemical reaction. The balanced phases in the actual material can realize high capacity and cycle stability. The results obtained highlight the possibility of regulating the ratio of the CCH phase versus the Co(OH)2 phase by controlling the reaction surface area.
机译:碳酸钴氢氧化物 (CCH) 是一种伪电容材料,具有非常高的电容和循环稳定性。以前,有报道称 CCH 伪电容材料本质上是斜方晶系的。最近的结构特征表明,它们本质上是六边形的;然而,他们的 H 位置仍然不清楚。在这项工作中,我们进行了第一性原理模拟来识别 H 位置。然后,我们考虑了晶体内部的各种基本去质子化反应,并计算评估了去质子化 (Vdp) 的电动势 (EMF)。与反应的实验电位窗口 (<0.6 V (vs saturated calomel electrode (SCE)) 相比,计算的 Vdp (vs SCE) 值 (3.05 V) 超出电位窗口,表明晶体内部从未发生过去质子化。这可能归因于晶体中形成的强氢键(H 键),导致结构稳定。通过考虑 CCH 晶体的生长机制,我们进一步研究了实际电容材料中的晶体各向异性。通过将我们的 X 射线衍射 (XRD) 峰模拟与实验结构分析相关联,我们发现 CCH 平面之间形成的 H 键(大致平行于 ab 平面)会导致一维生长(沿 c 轴堆叠)。这种各向异性生长控制总“非反应性”CCH 相(材料内部)和“反应性”氢氧化物 (Co(OH)2) 相(表面层)之间的平衡;前者稳定结构,而后者有助于电化学反应。实际材料中的平衡相可以实现高容量和循环稳定性。获得的结果强调了通过控制反应表面积来调节 CCH 相与 Co(OH)2 相的比率的可能性。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号