首页> 美国卫生研究院文献>ACS Omega >Study on Pyrolysis and Oxidation Characteristics of Coal Gangue Based on TGA-DSC
【2h】

Study on Pyrolysis and Oxidation Characteristics of Coal Gangue Based on TGA-DSC

机译:基于 TGA-DSC 的煤矸石热解氧化特性研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Coal gangue spontaneous combustion has caused serious environmental and ecological problems. To investigate the reaction kinetic parameters of the gangue and the exothermic characteristics of the spontaneous combustion of the influence of the law, this study employs the thermogravimetric method to explore the characteristic parameters of the pyrolysis and oxidative combustion process of the gangue from the perspective of thermodynamics, and, at the same time, using the differential scanning calorimetry (DSC) on the exothermic effect of the gangue to explore the gangue to obtain the gangue and the original coal TG/DTG/DSC curves to be compared and from the perspective of thermodynamics. The change rule and potential parameters in the pyrolysis and oxidative combustion process of coal gangue (CG) were analyzed, the oxidation kinetic properties of CG were studied, and the reaction mechanism of oxidative spontaneous combustion of CG was further explained. The results show that the TG/DTG/DSC curves of CG in different gas atmospheres will have significant differences in all stages, and in the process of pyrolysis and oxidative combustion, the thermogravimetric curves of CG and those of the original coal show a consistent trend, except for the large difference in peak amplitude in different stages; in different gas atmospheres, as the rate of warming increases, the TG/DTG/DSC curves of the gangue are tilted toward the high-temperature region, they are inclined to the high-temperature region with the increase of the heating rate, and the phenomenon of “hysteresis” of characteristic temperature occurs. The research results provide a theoretical basis for the construction of a spontaneous combustion early warning system based on the fine division of gangue pyrolysis and oxidation combustion stages.

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号