首页> 美国卫生研究院文献>ACS Omega >Binding Mechanisms and Therapeutic Activity of Heterocyclic Substituted Arylazothioformamide Ligands and Their Cu(I) Coordination Complexes
【2h】

Binding Mechanisms and Therapeutic Activity of Heterocyclic Substituted Arylazothioformamide Ligands and Their Cu(I) Coordination Complexes

机译:杂环取代的芳代硫代甲酰胺配体及其 Cu(I) 配位复合物的结合机制和治疗活性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Finding new sources of biologically active compounds for anticancer or antimicrobial therapies remains an active area of research. Azothioformamides (ATFs) with a 1,3 N=N–C=S heterodiene backbone are a new class of biologically active compounds that chelate metals (e.g., Cu) forming stable ATF metal coordination complexes. In this study, ATF ligands were prepared with pyrrolidine, piperidine, N-methylpiperazine, and morpholine substituents on the formamide as to add more heterocyclic drug-like character for biological studies. Formamide derivatives were then complexed with various Cu(I) salts to form coordination complexes. Cu(I) salts were selected as to create potential bioactive compounds with less toxicity. Binding association constants of each Cu(I) salt to ATF ligands were extrapolated from UV–vis titration studies and were corroborated with DFT calculations using a hybrid functional B3LYP method. It was observed that the smaller pyrrolidine functionalized ATFs bound to the Cu(I) salts had stronger binding than any of the larger six-membered-ring heterocycles with association values in the 104 – 105 M–1 range. The ATF-Cu(I) salt coordination complexes were then evaluated for antimicrobial activity against two bacteria (Staphylococcus aureus, Escherichia coli), one yeast (Candida albicans), four human cancer lines (A-549, K-562, HT-1080, MDA-MB-231), and two normal human lines (MRC-5, HFF). The ATF ligands themselves were inactive against all microbes and most human lines except K-562 cells, which were sensitive to three of the four ligands (IC50’s = 7.0–25.5 μM). Most ATF-Cu(I) complexes showed low to medium micromolar activity against Candida albicans (IC50’s 2.6–24.8 μM) and Staphylococcus aureus (IC50’s = 3.4–37.7 μM), with increasing activity corresponding to complexes with higher binding association constants. The antiproliferative properties of ATF-Cu(I) metal salt complexes against mammalian cells were mixed, with low to medium micromolar activity across all cell lines. Notably, several ATF-Cu(I) salt coordination complexes showed submicromolar activity against the HT-1080 fibrosarcoma line (0.52–0.69 μM). The results demonstrate promising activity of ATF-Cu(I) complexes, particularly with pyrrolidine as the formamide component. These studies suggest that the stronger binding association values correlate to higher levels of biological activity.

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号