首页> 美国卫生研究院文献>Indian Journal of Microbiology >Enhancing Degradation of Low Density Polyethylene Films by Curvularia lunata SG1 Using Particle Swarm Optimization Strategy
【2h】

Enhancing Degradation of Low Density Polyethylene Films by Curvularia lunata SG1 Using Particle Swarm Optimization Strategy

机译:粒子群优化算法提高弯孢菌SG1对低密度聚乙烯薄膜的降解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract In the present study, artificial neural network (ANN) modelling coupled with particle swarm optimization (PSO) algorithm was used to optimize the process variables for enhanced low density polyethylene (LDPE) degradation by Curvularia lunata SG1. In the non-linear ANN model, temperature, pH, contact time and agitation were used as input variables and polyethylene bio-degradation as the output variable. Further, on application of PSO to the ANN model, the optimum values of the process parameters were as follows: pH = 7.6, temperature = 37.97 °C, agitation rate = 190.48 rpm and incubation time = 261.95 days. A comparison between the model results and experimental data gave a high correlation coefficient (RANN2=0.999). Significant enhancement of LDPE bio-degradation using C.lunata SG1by about 48 % was achieved under optimum conditions. Thus, the novelty of the work lies in the application of combination of ANN–PSO as optimization strategy to enhance the bio-degradation of LDPE.
机译:摘要本文采用人工神经网络(ANN)建模与粒子群优化(PSO)算法相结合的方法,优化了弯孢菌SG1增强低密度聚乙烯(LDPE)降解的工艺变量。在非线性ANN模型中,将温度,pH,接触时间和搅动用作输入变量,并将聚乙烯生物降解作为输出变量。此外,在将PSO应用于ANN模型时,过程参数的最佳值如下:pH = 7.6,温度= 37.97°C,搅拌速度= 190.48 rpm,孵育时间= 261.95天。模型结果与实验数据之间的比较给出了很高的相关系数(<数学xmlns:mml =“ http://www.w3.org/1998/Math/MathML” id =“ M2”溢出=“ scroll”> < mrow> R ANN 2 = 0.999 )。在最佳条件下,使用C.lunata SG1将LDPE生物降解显着提高了约48%。因此,这项工作的新颖之处在于将ANN-PSO组合作为优化策略以增强LDPE的生物降解的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号