Chemical looping combustion (CLC) is a promising and novel technology for carbon dioxide (CO2) capture with a relatively low energy consumption and cost. CuO, one of the most attractive oxygen carriers (OCs) for carbon dioxide (CO) oxidation, suffers from sintering and agglomeration during the reduction process. Applying an electric field (EF) may promote the CO oxidation process on the CuO surface, which could mitigate sintering and agglomeration by decreasing operating temperatures with negligible combustion efficiency loss. This study performs density functional theory (DFT) simulations to investigate the effects of EF on the oxidation of CO on the CuO (111) surface. The results indicate that both the orientation and strength of the EF can significantly affect the oxidation characteristics of CO on the CuO (111) surface such as total reaction energy, energy barriers of reactions, CO adsorption, and CO2 desorption. For the first time, this study reveals the role of EF in enhancing CO oxidation through CLC processes via first-principle calculations. Such findings could provide new strategies to improve the performance of CLC processes.
展开▼
机译:化学循环燃烧 (CLC) 是一种很有前途的新型二氧化碳 (CO2) 捕获技术,能耗和成本相对较低。CuO 是二氧化碳 (CO) 氧化最有吸引力的氧载体 (OC) 之一,在还原过程中会发生烧结和团聚。施加电场 (EF) 可能会促进 CuO 表面的 CO 氧化过程,这可以通过降低工作温度来减轻烧结和团聚,而燃烧效率损失可以忽略不计。本研究进行密度泛函理论 (DFT) 模拟,以研究 EF 对 CuO (111) 表面 CO 氧化的影响。结果表明,EF 的取向和强度都可以显着影响 Co 在 CuO (111) 表面的氧化特性,例如总反应能、反应的能垒、CO 吸附和 CO2 解吸。这项研究首次通过第一性原理计算揭示了 EF 在 CLC 过程中增强 CO 氧化的作用。这些发现可能为提高 CLC 过程的性能提供新的策略。
展开▼