首页> 美国卫生研究院文献>BJR Open >Deep learning in breast imaging
【2h】

Deep learning in breast imaging

机译:乳腺成像中的深度学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Millions of breast imaging exams are performed each year in an effort to reduce the morbidity and mortality of breast cancer. Breast imaging exams are performed for cancer screening, diagnostic work-up of suspicious findings, evaluating extent of disease in recently diagnosed breast cancer patients, and determining treatment response. Yet, the interpretation of breast imaging can be subjective, tedious, time-consuming, and prone to human error. Retrospective and small reader studies suggest that deep learning (DL) has great potential to perform medical imaging tasks at or above human-level performance, and may be used to automate aspects of the breast cancer screening process, improve cancer detection rates, decrease unnecessary callbacks and biopsies, optimize patient risk assessment, and open up new possibilities for disease prognostication. Prospective trials are urgently needed to validate these proposed tools, paving the way for real-world clinical use. New regulatory frameworks must also be developed to address the unique ethical, medicolegal, and quality control issues that DL algorithms present. In this article, we review the basics of DL, describe recent DL breast imaging applications including cancer detection and risk prediction, and discuss the challenges and future directions of artificial intelligence-based systems in the field of breast cancer.
机译:每年进行数百万次乳腺影像学检查,以降低乳腺癌的发病率和死亡率。进行乳腺影像学检查用于癌症筛查、可疑发现的诊断检查、评估近期诊断的乳腺癌患者的疾病程度以及确定治疗反应。然而,乳腺成像的解释可能是主观的、乏味的、耗时的,并且容易出现人为错误。回顾性和小读者研究表明,深度学习 (DL) 具有巨大的潜力,可以以或高于人类水平的性能执行医学成像任务,并可用于自动化乳腺癌筛查过程的各个方面,提高癌症检出率,减少不必要的回调和活检,优化患者风险评估,并为疾病预后开辟新的可能性。迫切需要前瞻性试验来验证这些提出的工具,为实际临床使用铺平道路。还必须开发新的监管框架,以解决 DL 算法带来的独特伦理、法医和质量控制问题。在本文中,我们回顾了 DL 的基础知识,描述了最近的 DL 乳腺成像应用,包括癌症检测和风险预测,并讨论了基于人工智能的系统在乳腺癌领域的挑战和未来方向。

著录项

  • 期刊名称 BJR Open
  • 作者单位
  • 年(卷),期 2022(4),1
  • 年度 2022
  • 页码 20210060
  • 总页数 12
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号