首页> 美国卫生研究院文献>Metabolites >Interpretation of Multivariate Association Patterns between Multicollinear Physical Activity Accelerometry Data and Cardiometabolic Health in Children—A Tutorial
【2h】

Interpretation of Multivariate Association Patterns between Multicollinear Physical Activity Accelerometry Data and Cardiometabolic Health in Children—A Tutorial

机译:多共线体力活动加速度计数据与儿童心脏代谢健康之间的多元关联模式解释—教程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Associations between multicollinear accelerometry-derived physical activity (PA) data and cardiometabolic health in children needs to be analyzed using an approach that can handle collinearity among the explanatory variables. The aim of this paper is to provide readers a tutorial overview of interpretation of multivariate pattern analysis models using PA accelerometry data that reveals the associations to cardiometabolic health. A total of 841 children (age 10.2 ± 0.3 years) provided valid data on accelerometry (ActiGraph GT3X+) and six indices of cardiometabolic health that were used to create a composite score. We used a high-resolution PA description including 23 intensity variables covering the intensity spectrum (from 0–99 to ≥10000 counts per minute), and multivariate pattern analysis to analyze data. We report different statistical measures of the multivariate associations between PA and cardiometabolic health and use decentile groups of PA as a basis for discussing the meaning and impact of multicollinearity. We show that for high-resolution accelerometry data; considering all explanatory variables is crucial to obtain a correct interpretation of associations to cardiometabolic health; which is otherwise strongly confounded by multicollinearity in the dataset. Thus; multivariate pattern analysis challenges the traditional interpretation of findings from linear regression models assuming independent explanatory variables
机译:需要使用一种能够处理解释变量之间的共线性的方法来分析多共线加速度计衍生的身体活动(PA)数据与儿童心脏代谢健康之间的关联。本文的目的是为读者提供使用PA加速度计数据解释多元模式分析模型的教程概述,该模型揭示了与心脏代谢健康的关系。共有841名儿童(年龄10.2±0.3岁)提供了有关加速度计(ActiGraph GT3X +)的有效数据以及用于创建综合评分的六个心脏代谢健康指数。我们使用了高分辨率的PA描述,包括覆盖强度谱的23个强度变量(每分钟0-99到≥10000个计数),以及多变量模式分析来分析数据。我们报告了P​​A和心脏代谢健康之间的多元关联的不同统计量度,并使用PA的分散组作为讨论多重共线性的含义和影响的基础。我们证明了对于高分辨率加速度计数据;考虑所有解释变量对于正确理解与心脏代谢健康的关系至关重要;否则,它会被数据集中的多重共线性严重混淆。从而;假设独立的解释变量,多元模式分析挑战了线性回归模型对结果的传统解释

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号