首页> 美国卫生研究院文献>Materials >An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction
【2h】

An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction

机译:基于发色反应的选择性光吸收和波长滤波的光学生物传感策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the concentration of glucose in the range from 0 to 10 mM.
机译:为了通过生物传感方法克服疾病诊断中的时间和空间限制,我们开发了一种新的信号转导策略,可将其应用于比色光学生物传感器。我们的研究集中于信号转导技术的实施,该技术可以将需要复杂光学设备进行分析的色彩强度信号直接转换为可以用肉眼轻松计数的信号。基于选择性的光吸收和波长过滤原理,我们的新型光信号换能器由通用的计算机显示器和智能手机构成。在此信号换能器中,计算机监视器的液晶显示屏(LCD)面板用作光源和信号引导发生器。此外,智能手机还用作光接收器和信号显示器。作为生物识别层,采用了基于透明和柔软材料的生物传感通道,可通过靶标特异性双酶发色反应产生蓝色输出。使用图形编辑器软件,我们在LCD监视器面板上显示了包含多个多边形(三角形,圆形,五边形,七边形和3/4圆形,每个都与指定的色彩比相关联)的光信号引导图案。在使用智能手机摄像头通过目标分析物加载的生物传感通道作为滤色层观察LCD监视器面板上显示的信号引导图案期间,观察到的多边形数量根据目标分析物的浓度通过光谱之间的光谱相关性而变化。每种类型的多边形的生物传感通道溶液的吸光度变化和颜色发射特性。通过简单地计算通过智能手机相机记录的多边形数量的变化,我们可以有效地测量样品中目标分析物的浓度,而无需使用复杂且昂贵的光学仪器。在以葡萄糖作为模型分析物的演示测试中,我们可以轻松测量0至10 mM范围内的葡萄糖浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号