首页> 美国卫生研究院文献>Biomedicines >GastricAITool: A Clinical Decision Support Tool for the Diagnosis and Prognosis of Gastric Cancer
【2h】

GastricAITool: A Clinical Decision Support Tool for the Diagnosis and Prognosis of Gastric Cancer

机译:GastricAITool:胃癌诊断和预后的临床决策支持工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background/Objective: Gastric cancer (GC) is a complex disease representing a significant global health concern. Advanced tools for the early diagnosis and prediction of adverse outcomes are crucial. In this context, artificial intelligence (AI) plays a fundamental role. The aim of this work was to develop a diagnostic and prognostic tool for GC, providing support to clinicians in critical decision-making and enabling personalised strategies. Methods: Different machine learning and deep learning techniques were explored to build diagnostic and prognostic models, ensuring model interpretability and transparency through explainable AI methods. These models were developed and cross-validated using data from 590 Spanish Caucasian patients with primary GC and 633 cancer-free individuals. Up to 261 variables were analysed, including demographic, environmental, clinical, tumoral, and genetic data. Variables such as Helicobacter pylori infection, tobacco use, family history of GC, TNM staging, metastasis, tumour location, treatment received, gender, age, and genetic factors (single nucleotide polymorphisms) were selected as inputs due to their association with the risk and progression of the disease. Results: The XGBoost algorithm (version 1.7.4) achieved the best performance for diagnosis, with an AUC value of 0.68 using 5-fold cross-validation. As for prognosis, the Random Survival Forest algorithm achieved a C-index of 0.77. Of interest, the incorporation of genetic data into the clinical–demographics models significantly increased discriminatory ability in both diagnostic and prognostic models. Conclusions: This article presents GastricAITool, a simple and intuitive decision support tool for the diagnosis and prognosis of GC.
机译:背景/目标: 胃癌 (GC) 是一种复杂的疾病,代表着一个重大的全球健康问题。用于早期诊断和预测不良结局的先进工具至关重要。在这种情况下,人工智能 (AI) 发挥着重要作用。这项工作的目的是开发一种 GC 诊断和预后工具,为临床医生的关键决策提供支持并实现个性化策略。方法: 探索了不同的机器学习和深度学习技术来构建诊断和预测模型,通过可解释的 AI 方法确保模型的可解释性和透明度。这些模型是使用来自 590 名西班牙白人原发性 GC 患者和 633 名无癌症个体的数据开发和交叉验证的。分析了多达 261 个变量,包括人口统计学、环境、临床、肿瘤和遗传数据。幽门螺杆菌感染、烟草使用、GC 家族史、TNM 分期、转移、肿瘤位置、接受的治疗、性别、年龄和遗传因素 (单核苷酸多态性) 等变量被选为输入,因为它们与疾病的风险和进展相关。结果: XGBoost 算法 ( 1.7.4 版 ) 实现了最佳的诊断性能,使用 5 倍交叉验证时 AUC 值为 0.68。至于预后,随机生存森林算法的 C 指数为 0.77。有趣的是,将遗传数据纳入临床-人口统计学模型显着提高了诊断和预后模型的判别能力。结论:本文介绍了 GastricAITool,这是一种简单直观的 GC 诊断和预后决策支持工具。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号