首页> 美国卫生研究院文献>Materials >Fretting Fatigue Analysis of Additively Manufactured Blade Root Made of Intermetallic Ti-48Al-2Cr-2Nb Alloy at High Temperature
【2h】

Fretting Fatigue Analysis of Additively Manufactured Blade Root Made of Intermetallic Ti-48Al-2Cr-2Nb Alloy at High Temperature

机译:金属间化合物Ti-48Al-2Cr-2Nb合金制成的叶片根的高温微动疲劳分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Slots in the disk of aircraft turbines restrain the centrifugal load of blades. Contact surfaces between the blade root and the disk slot undergo high contact pressure and relative displacement that is the typical condition in which fretting occurs. The load level ranges from zero to the maximum during take-off. This cycle is repeated for each mission. In this paper, a fretting fatigue analysis of additively manufactured blades is presented. Blades are made of an intermetallic alloy γTiAl. Fretting fatigue experiments were performed at a frequency of 0.5 Hz and at a temperature of 640 °C to match the operating condition of real blades. The minimum load was fixed at 0.5 KN and three maximum loads were applied, namely 16, 18 and 20 kN. Both an analytical and a two-dimensional finite element model were used to evaluate the state of stress at the contact interfaces. The results of the analytical model showed good agreement with the numerical model. Experiments showed that cracks nucleate where the analytical model predicts the maximum contact pressure and the numerical model predicts the maximum equivalent stress. A parametric analysis performed with the analytical model indicates that there exists an optimum geometry to minimize the contact pressure. Tests showed that the component life changed dramatically with the maximum load variation. Optical topography and scanning electron microscopy (SEM) analysis reveals information about the damage mechanism.
机译:飞机涡轮盘上的缝隙限制了叶片的离心载荷。叶片根部和磁盘槽之间的接触表面承受较高的接触压力和相对位移,这是发生微动的典型条件。起飞期间负载水平从零到最大。对每个任务重复此循环。在本文中,提出了增材制造叶片的微动疲劳分析。叶片由金属间合金γTiAl制成。微动疲劳实验在0.5 Hz的频率和640°C的温度下进行,以匹配实际叶片的工作条件。最小负载固定为0.5 KN,并施加了三个最大负载,即16、18和20 kN。解析和二维有限元模型均用于评估接触界面处的应力状态。分析模型的结果与数值模型吻合良好。实验表明,裂纹在分析模型预测最大接触压力而数值模型预测最大等效应力的地方成核。用分析模型执行的参数分析表明,存在最佳几何形状以最小化接触压力。测试表明,随着最大负载变化,组件寿命发生了显着变化。光学形貌和扫描电子显微镜(SEM)分析揭示了有关损伤机理的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号