首页> 美国卫生研究院文献>Materials >Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting
【2h】

Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting

机译:能量输入对电子束熔融增材制造铝钛合金组织和力学性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM), an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.
机译:钛铝化物有足够的资格代替常规的镍基高温合金用于高级航空发动机。高温性能和较低密度的结合为铝化钛合金提供了优势。然而,在如何将这些基本上是金属间合金加工成实际产品方面仍然存在挑战。电子束熔化(EBM)是一种增材制造方法,可以从给定的原料粉末制造复杂形状的固体零件,从而克服了传统加工技术(例如机加工和锻造)的缺点。电子束提供的能量数量对EBM工艺的最终成型质量有很大影响。能量输入由束电压,束扫描速度,束电流和轨道偏移距离决定。在当前工作中,改变束电流和轨道偏移以反映能量输入的三个水平。对这些样品的微观结构和力学性能进行了评估。微观结构沿构造方向从顶部到底部逐渐变粗。较高的能量有利于板条的微观结构,而较低的能量倾向于等轴晶。计算机断层扫描分析表明,低能样品中孔隙率较高。另外,缺乏粘合缺陷导致在低能量样品的拉伸试验中过早失效。能量增加到中等水平可大大抵消孔隙率,从而提高强度。但是,这种趋势并没有随着高能量样品的出现而持续。进行了电子显微镜和X射线衍射研究,以了解这三个样品中强度的非线性行为。总体而言,这项工作的结果表明,无论何时必须通过EBM路线加工任何新的合金系统,都应首先考虑输入能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号