首页> 美国卫生研究院文献>Materials >The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy
【2h】

The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

机译:铣削时间对粉末冶金NiMo-SiC合金显微组织和强化机制的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.
机译:已经开发出了依靠各种强化机制相结合的新一代合金,可用于熔融盐核反应堆。在当前的研究中,通过机械合金化(MA)路线,从Ni-Mo-SiC粉末混合物制备了一系列分散和沉淀强化(DPS)含不同量SiC(0.5-2.5 wt%)的NiMo基合金。然后进行火花等离子体烧结(SPS)和快速冷却。对这些内部制备的NiMo-SiC DPS合金的显微组织性能进行表征时,采用了中子粉末衍射(NPD),电子反向散射衍射(EBSD)和透射电子显微镜(TEM)。研究表明,均匀分散的SiC颗粒可增强分散,纳米级Ni3Si颗粒的沉淀可增强沉淀,而Mo在Ni基体中的固溶可增强固溶。进一步表明,铣削时间对这些合金的显微组织特征有重要影响。铣削时间的增加似乎通过在烧结过程中产生分散良好的Mo2C颗粒而限制了NiMo基体的晶粒长大。晶界的数量大大增加了Hall-Petch的强化,与48h铣削的合金相比,48h铣削的NiMo-SiC DPS合金的强度明显更高。但是,还显示出由于高孔隙率,在48小时铣削的NiMo-SiC DPS合金中,总伸长率明显降低。孔隙率是在延长的研磨过程中粉末混合物冷焊的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号