首页> 美国卫生研究院文献>Materials >Analysis of Forming Limits in Sheet Metal Forming with Pattern Recognition Methods. Part 1: Characterization of Onset of Necking and Expert Evaluation
【2h】

Analysis of Forming Limits in Sheet Metal Forming with Pattern Recognition Methods. Part 1: Characterization of Onset of Necking and Expert Evaluation

机译:使用模式识别方法分析钣金成形中的成形极限。第1部分:颈缩发作的特征和专家评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In automotive manufacturing, high strength materials, and aluminum alloys are widely used to address the requirement of ensuring a lightweight car body and correspondingly, reducing pollution. In this context of complexity of materials and structures, an optimized process design with finite element analyses (FEA) is mandatory, as well as a correct definition of the material forming limits. For this purpose, in sheet metal forming, the forming limit curve (FLC) is used. The FLC is defined by the onset of necking. The standard evaluation method according to DIN EN ISO 12004-2 is based on the cross-section method and assumes that the failure occurs due to a clear localized necking. However, this approach has its limitations, specifically in the case of brittle materials that do not exhibit a distinct necking phase. To overcome this challenge, a pattern recognition-based evaluation is proposed. Although pattern recognition and machine learning techniques have been widely employed in the medical field, few studies have investigated them in the context of analyzing metal sheet forming limits. The application of pattern recognition in metal forming is subject to the exact definition of the forming behaviors. Thereby, it is challenging to relate patterns on the strain distribution during Nakajima tests with the onset of necking for the FLC determination. Thus, the first approach was based on the crack evaluation, since this class is well-defined. However, of substantial interest is the evaluation of the general material instabilities that precede failure. Therefore, in the present study, the analysis of the material behavior during stretching is conducted in order to characterize instability classes. The results of Nakajima tests are investigated using an optical measurement system. A conventional pattern recognition approach based on texture features, considering the outcomes of expert interviews for the definition of classes is used for the FLC determination. Moreover, an analysis of the validity of the supervised learning is conducted. The results show a good prediction of the onset of necking, even for high strength materials with a recall of up to 92%. Some deviations are observed in the determination of the diffuse necking. The discrepancies of the different experts’ prognoses highlight the user-dependency of the FLC, suggesting further investigations with an data-driven approach, could be beneficial.
机译:在汽车制造中,高强度材料和铝合金被广泛用于满足确保车身轻量化并相应减少污染的要求。考虑到材料和结构的复杂性,必须使用有限元分析(FEA)进行优化的过程设计,并正确定义材料的形成极限。为此,在金属板成形中使用成形极限曲线(FLC)。 FLC由缩颈的开始定义。根据DIN EN ISO 12004-2的标准评估方法是基于横截面方法的,并且假定故障是由于明显的局部颈缩而发生的。但是,这种方法有其局限性,特别是在脆性材料没有明显的颈缩相的情况下。为了克服这一挑战,提出了一种基于模式识别的评估方法。尽管模式识别和机器学习技术已在医学领域得到广泛应用,但很少有研究在分析金属板成形极限的情况下对其进行研究。图案识别在金属成型中的应用要受成型行为的精确定义。因此,将中岛试验过程中的应变分布图样与颈缩开始时的FLC测定联系起来具有挑战性。因此,第一种方法是基于裂纹评估的,因为此类是明确定义的。但是,引起人们极大兴趣的是对失效之前的一般材料不稳定性的评估。因此,在本研究中,进行了拉伸过程中材料行为的分析,以表征不稳定性类别。中岛检验的结果是使用光学测量系统进行调查的。一种基于纹理特征的常规模式识别方法,考虑了专家访谈的结果以定义类,用于FLC确定。此外,对监督学习的有效性进行了分析。结果表明,即使对于召回率高达92%的高强度材料,也可以很好地预测缩颈的发生。在确定弥散颈缩时观察到一些偏差。不同专家的预测差异突出了FLC的用户依赖性,这表明采用数据驱动方法进行进一步研究可能是有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号