首页> 美国卫生研究院文献>PPAR Research >GaitRec-Net: A Deep Neural Network for Gait Disorder Detection Using Ground Reaction Force
【2h】

GaitRec-Net: A Deep Neural Network for Gait Disorder Detection Using Ground Reaction Force

机译:GaitRec-Net:使用地面反作用力检测步态障碍的深度神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Walking (gait) irregularities and abnormalities are predictors and symptoms of disorder and disability. In the past, elaborate video (camera-based) systems, pressure mats, or a mix of the two has been used in clinical settings to monitor and evaluate gait. This article presents an artificial intelligence-based comprehensive investigation of ground reaction force (GRF) pattern to classify the healthy control and gait disorders using the large-scale ground reaction force. The used dataset comprised GRF measurements from different patients. The article includes machine learning- and deep learning-based models to classify healthy and gait disorder patients using ground reaction force. A deep learning-based architecture GaitRec-Net is proposed for this classification. The classification results were evaluated using various metrics, and each experiment was analysed using a fivefold cross-validation approach. Compared to machine learning classifiers, the proposed deep learning model is found better for feature extraction resulting in high accuracy of classification. As a result, the proposed framework presents a promising step in the direction of automatic categorization of abnormal gait pattern.
机译:行走(步态)不规则和异常是疾病和残疾的预测因素和症状。过去,在临床环境中使用复杂的视频(基于摄像头)系统、压力垫或两者的混合来监测和评估步态。本文提出了一种基于人工智能的地面反作用力 (GRF) 模式综合调查,以使用大规模地面反作用力对健康控制和步态障碍进行分类。使用的数据集包括来自不同患者的 GRF 测量值。本文包括基于机器学习和深度学习的模型,用于使用地面反作用力对健康和步态障碍患者进行分类。为这种分类提出了一种基于深度学习的架构 GaitRec-Net。使用各种指标对分类结果进行评估,并使用五重交叉验证方法分析每个实验。与机器学习分类器相比,所提出的深度学习模型被发现更适合特征提取,从而获得很高的分类准确性。因此,所提出的框架朝着异常步态模式自动分类的方向迈出了有希望的一步。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号