首页> 美国卫生研究院文献>Microbiome >Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization
【2h】

Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization

机译:通过监督和无监督的非负矩阵分解学习微生物群落结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundLearning the structure of microbial communities is critical in understanding the different community structures and functions of microbes in distinct individuals. We view microbial communities as consisting of many subcommunities which are formed by certain groups of microbes functionally dependent on each other. The focus of this paper is on methods for extracting the subcommunities from the data, in particular Non-Negative Matrix Factorization (NMF). Our methods can be applied to both OTU data and functional metagenomic data. We apply the existing unsupervised NMF method and also develop a new supervised NMF method for extracting interpretable information from classification problems.
机译:背景技术了解微生物群落的结构对于理解不同个体中微生物的不同群落结构和功能至关重要。我们将微生物群落视为由许多亚群落组成,这些亚群落是由功能上相互依赖的某些微生物组形成的。本文的重点是从数据中提取子社区的方法,特别是非负矩阵分解(NMF)。我们的方法可以应用于OTU数据和功能宏基因组学数据。我们应用了现有的无监督NMF方法,并开发了一种新的有监督NMF方法来从分类问题中提取可解释的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号