首页> 美国卫生研究院文献>Advanced Science >Intelligence Sparse Sensor Network for Automatic Early Evaluation of General Movements in Infants
【2h】

Intelligence Sparse Sensor Network for Automatic Early Evaluation of General Movements in Infants

机译:用于婴儿一般运动自动早期评估的智能稀疏传感器网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

General movements (GMs) have been widely used for the early clinical evaluation of infant brain development, allowing immediate evaluation of potential development disorders and timely rehabilitation. The infants’ general movements can be captured digitally, but the lack of quantitative assessment and well‐trained clinical pediatricians presents an obstacle for many years to achieve wider deployment, especially in low‐resource settings. There is a high potential to explore wearable sensors for movement analysis due to outstanding privacy, low cost, and easy‐to‐use features. This work presents a sparse sensor network with soft wireless IMU devices (SWDs) for automatic early evaluation of general movements in infants. The sparse network consisting of only five sensor nodes (SWDs) with robust mechanical properties and excellent biocompatibility continuously and stably captures full‐body motion data. The proof‐of‐the‐concept clinical testing with 23 infants showcases outstanding performance in recognizing neonatal activities, confirming the reliability of the system. Taken together with a tiny machine learning algorithm, the system can automatically identify risky infants based on the GMs, with an accuracy of up to 100% (99.9%). The wearable sparse sensor network with an artificial intelligence‐based algorithm facilitates intelligent evaluation of infant brain development and early diagnosis of development disorders.
机译:一般运动 (General Movements, GM) 已广泛用于婴儿大脑发育的早期临床评估,可以立即评估潜在的发育障碍并及时康复。婴儿的一般运动可以通过数字方式捕捉,但缺乏定量评估和训练有素的临床儿科医生多年来阻碍了实现更广泛的部署,尤其是在资源匮乏的环境中。由于出色的隐私性、低成本和易于使用的功能,探索可穿戴传感器进行运动分析的潜力很大。这项工作提出了一个带有软无线 IMU 设备 (SWD) 的稀疏传感器网络,用于婴儿一般运动的自动早期评估。稀疏网络仅由五个传感器节点 (SWD) 组成,具有强大的机械性能和出色的生物相容性,可连续稳定地捕获全身运动数据。对 23 名婴儿进行的概念验证临床测试展示了在识别新生儿活动方面的出色表现,证实了系统的可靠性。结合微型机器学习算法,该系统可以根据 GM 自动识别高危婴儿,准确率高达 100% (99.9%)。可穿戴稀疏传感器网络采用基于人工智能的算法,有助于对婴儿大脑发育进行智能评估和发育障碍的早期诊断。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号