首页> 美国卫生研究院文献>International Journal of Environmental Research and Public Health >Application of Artificial Neural Networks to Identify Alzheimer’s Disease Using Cerebral Perfusion SPECT Data
【2h】

Application of Artificial Neural Networks to Identify Alzheimer’s Disease Using Cerebral Perfusion SPECT Data

机译:人工神经网络通过脑灌注SPECT数据识别阿尔茨海默氏病的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this study was to demonstrate the usefulness of artificial neural networks in Alzheimer disease diagnosis (AD) using data of brain single photon emission computed tomography (SPECT). The results were compared with discriminant analysis. The study population consisted of 132 clinically diagnosed patients. There were 72 subjects with AD and 60 belonging to the normal control group. The artificial neural network used 36 numerical values being the count numbers obtained for each area of brain SPECT. These numbers determined the set of input data for the artificial neural network. The sensitivity of Alzheimer disease diagnosis detection by artificial neural network and discriminant analysis were 93.8% and 86.1%, respectively, and the corresponding specificity was 100% and 95%. We also used receiver operating characteristic curve (ROC) analysis and areas under receiver operating characteristics curves were correspondingly 0.97 (p < 0.0001) for the artificial neural networks (ANN) and 0.96 (p < 0.0001) for discriminant analysis. In conclusion, artificial neural networks and conventional statistics methods (discriminant analysis) are a useful tool in Alzheimer disease diagnosis.
机译:这项研究的目的是证明使用大脑单光子发射计算机断层扫描(SPECT)的数据,人工神经网络在阿尔茨海默氏病诊断(AD)中的有用性。将结果与判别分析进行比较。研究人群包括132位临床诊断的患者。有72名AD患者和60名属于正常对照组。人工神经网络使用36个数值作为大脑SPECT每个区域获得的计数值。这些数字确定了人工神经网络的输入数据集。人工神经网络和判别分析法诊断阿尔茨海默病的敏感性分别为93.8%和86.1%,相应的特异性为100%和95%。我们还使用了接收器工作特性曲线(ROC)分析,接收器工作特性曲线下的面积对于人工神经网络(ANN)分别为0.97(p <0.0001),对于判别分析而言分别为0.96(p <0.0001)。总之,人工神经网络和常规统计方法(判别分析)是阿尔茨海默氏病诊断的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号