首页> 美国卫生研究院文献>International Journal of Environmental Research and Public Health >Data-Driven Approach to Improving the Risk Assessment Process of Medical Failures
【2h】

Data-Driven Approach to Improving the Risk Assessment Process of Medical Failures

机译:数据驱动方法改善医疗事故风险评估流程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent decades, many researchers have focused on the issue of medical failures in the healthcare industry. A variety of techniques have been employed to assess the risk of medical failure and to generate strategies to reduce the frequency of medical failures. Considering the limitations of the traditional method—failure mode and effects analysis (FMEA)—for risk assessment and quality improvement, this paper presents two models developed using data envelopment analysis (DEA). One is called the slacks-based measure DEA (SBM-DEA) model, and the other is a novel data-driven approach (NDA) that combines FMEA and DEA. The relative advantages of the three models are compared. In this paper, an infant security case consisting of 16 failure modes at Western Wake Medical Center in Raleigh, North Carolina, U.S., was employed. The results indicate that both SBM-DEA and NDA may improve the discrimination and accuracy of detection compared to the traditional method of FMEA. However, NDA was found to have a relative advantage over SBM-DEA due to its risk assessment capability and precise detection of medical failures.
机译:近几十年来,许多研究人员将重点放在医疗保健行业的医疗故障问题上。已经采用了多种技术来评估医疗故障的风险并生成减少医疗故障频率的策略。考虑到传统方法(故障模式和影响分析(FMEA))在风险评估和质量改进方面的局限性,本文介绍了使用数据包络分析(DEA)开发的两个模型。一种叫做基于松弛的度量DEA(SBM-DEA)模型,另一种是结合了FMEA和DEA的新型数据驱动方法(NDA)。比较了这三种模型的相对优势。本文采用了美国北卡罗来纳州罗利市Western Wake Medical Center的一种由16种故障模式组成的婴儿安全案例。结果表明,与传统的FMEA方法相比,SBM-DEA和NDA均可提高检测的辨别力和准确性。但是,由于其风险评估能力和对医疗故障的精确检测,发现NDA比SBM-DEA具有相对优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号