首页> 美国卫生研究院文献>Comparative and Functional Genomics >Ensemble Methods with Voting Protocols Exhibit Superior Performance for Predicting Cancer Clinical Endpoints and Providing More Complete Coverage of Disease-Related Genes
【2h】

Ensemble Methods with Voting Protocols Exhibit Superior Performance for Predicting Cancer Clinical Endpoints and Providing More Complete Coverage of Disease-Related Genes

机译:具有表决协议的集成方法在预测癌症临床终点和提供与疾病相关基因的更全面覆盖方面表现出优异的性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In genetic data modeling, the use of a limited number of samples for modeling and predicting, especially well below the attribute number, is difficult due to the enormous number of genes detected by a sequencing platform. In addition, many studies commonly use machine learning methods to evaluate genetic datasets to identify potential disease-related genes and drug targets, but to the best of our knowledge, the information associated with the selected gene set was not thoroughly elucidated in previous studies. To identify a relatively stable scheme for modeling limited samples in the gene datasets and reveal the information that they contain, the present study first evaluated the performance of a series of modeling approaches for predicting clinical endpoints of cancer and later integrated the results using various voting protocols. As a result, we proposed a relatively stable scheme that used a set of methods with an ensemble algorithm. Our findings indicated that the ensemble methodologies are more reliable for predicting cancer prognoses than single machine learning algorithms as well as for gene function evaluating. The ensemble methodologies provide a more complete coverage of relevant genes, which can facilitate the exploration of cancer mechanisms and the identification of potential drug targets.
机译:在遗传数据建模中,由于测序平台检测到大量基因,因此很难使用有限数量的样本进行建模和预测,尤其是远低于属性数。此外,许多研究通常使用机器学习方法来评估遗传数据集,以识别潜在的疾病相关基因和药物靶标,但是据我们所知,在先前的研究中并未充分阐明与所选基因集相关的信息。为了确定一个相对稳定的方案来对基因数据集中的有限样品进行建模并揭示其中包含的信息,本研究首先评估了一系列用于预测癌症临床终点的建模方法的性能,然后使用各种表决方案对结果进行了整合。结果,我们提出了一个相对稳定的方案,该方案使用了带有集成算法的一组方法。我们的发现表明,与单机学习算法以及基因功能评估相比,集成方法在预测癌症预后方面更为可靠。整体方法学提供了有关基因的更完整的报道,这可以促进癌症机制的探索和潜在药物靶标的鉴定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号