首页> 美国卫生研究院文献>Comparative and Functional Genomics >A System for Identifying Named Entities in Biomedical Text: how Results From two Evaluations Reflect on Both the System and the Evaluations
【2h】

A System for Identifying Named Entities in Biomedical Text: how Results From two Evaluations Reflect on Both the System and the Evaluations

机译:用于识别生物医学文本中命名实体的系统: 两次评估的结果如何反映系统和评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a maximum entropy-based system for identifying named entities (NEs) in biomedical abstracts and present its performance in the only two biomedical named entity recognition (NER) comparative evaluations that have been held to date, namely BioCreative and Coling BioNLP. Our system obtained an exact match F-score of 83.2% in the BioCreative evaluation and 70.1% in the BioNLP evaluation. We discuss our system in detail, including its rich use of local features, attention to correct boundary identification, innovative use of external knowledge resources, including parsing and web searches, and rapid adaptation to new NE sets. We also discuss in depth problems with data annotation in the evaluations which caused the final performance to be lower than optimal.
机译:我们提出了一种基于最大熵的系统,用于识别生物医学摘要中的命名实体(NE),并在迄今为止举行的仅有的两次生物医学命名实体识别(NER)比较评估中(即BioCreative和Coling BioNLP)展示了其性能。我们的系统在BioCreative评估中获得的精确匹配F分数为83.2%,在BioNLP评估中为70.1%。我们将详细讨论我们的系统,包括其对本地功能的丰富使用,对正确边界识别的关注,对外部知识资源的创新使用(包括解析和网络搜索)以及对新NE集的快速适应。我们还将在评估中深入讨论数据注释问题,这些问题会导致最终性能低于最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号