首页> 美国卫生研究院文献>BMC Genomics >Identification of host-microbe interaction factors in the genomes of soft rot-associated pathogens Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14 with supervised machine learning
【2h】

Identification of host-microbe interaction factors in the genomes of soft rot-associated pathogens Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14 with supervised machine learning

机译:监督机器学习鉴定软腐病病原体Dickeya dadantii 3937和Carotovorum WPP14软腐病相关基因组中的宿主微生物相互作用因子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundA wealth of genome sequences has provided thousands of genes of unknown function, but identification of functions for the large numbers of hypothetical genes in phytopathogens remains a challenge that impacts all research on plant-microbe interactions. Decades of research on the molecular basis of pathogenesis focused on a limited number of factors associated with long-known host-microbe interaction systems, providing limited direction into this challenge. Computational approaches to identify virulence genes often rely on two strategies: searching for sequence similarity to known host-microbe interaction factors from other organisms, and identifying islands of genes that discriminate between pathogens of one type and closely related non-pathogens or pathogens of a different type. The former is limited to known genes, excluding vast collections of genes of unknown function found in every genome. The latter lacks specificity, since many genes in genomic islands have little to do with host-interaction.
机译:背景技术大量的基因组序列已经提供了成千上万个功能未知的基因,但是鉴定植物病原体中大量假想基因的功能仍然是一个挑战,影响着对植物-微生物相互作用的所有研究。关于发病机理的分子基础的数十年研究集中于与长期已知的宿主-微生物相互作用系统相关的有限数量的因素,从而为应对这一挑战提供了有限的方向。识别毒力基因的计算方法通常依赖于两种策略:寻找与其他生物体中已知的宿主-微生物相互作用因子的序列相似性;以及识别可区分一种类型的病原体和密切相关的非病原体或不同病原体的基因岛类型。前者仅限于已知基因,不包括在每个基因组中发现的功能未知的基因的大量集合。后者缺乏特异​​性,因为基因岛中的许多基因与宿主相互作用无关。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号