首页> 美国卫生研究院文献>Biomicrofluidics >Review Article: Capturing the physiological complexity of the brains neuro-vascular unit in vitro
【2h】

Review Article: Capturing the physiological complexity of the brains neuro-vascular unit in vitro

机译:评论文章:体外捕获大脑神经血管单元的生理复杂性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the accelerating pace of brain research in recent years and the growing appreciation of the complexity of the brain and several brain-associated neurological diseases, the demand for powerful tools to enhance drug screening, diagnosis, and fundamental research is greater than ever. Highly representative models of the central nervous system (CNS) can play a critical role in meeting these needs. Unfortunately, in vivo animal models lack controllability, are difficult to monitor, and do not model human-specific brain behavior accurately. On the other hand, in silico computational models struggle to capture comprehensively the intertwined biological, chemical, electrical, and mechanical complexity of the brain. This leaves us with the promising domain of “organ-on-chip” in vitro models. In this review, we describe some of the most pioneering efforts in this expanding field, offering a perspective on the new possibilities as well as the limitations of each approach. We focus particularly on how the models reproduce the blood–brain barrier (BBB), which mediates mass transport to and from brain tissue. We also offer a brief commentary on strategies for evaluating the blood–brain barrier functionality of these in vitro models, including trans-endothelial electrical resistance (TEER), immunocytochemistry, and permeability analysis. From the early membrane-based models of the BBB that have grown into the Transwell® class of devices, to the era of microfluidic chips and a future of bio-printed tissue, we see enormous improvement in the reliability of in vitro models. More and more of the biological and structural complexity of the BBB is being captured by microfluidic chips, and the organ-specificity of bio-printed tissue is also significantly improved. Although we believe that the long-term solution will eventually take the form of automated and parallelized bio-printing systems, we find that valuable transport studies can already be accomplished with microfluidic platforms.
机译:近年来,随着大脑研究的步伐不断加快,人们对大脑的复杂性以及几种与大脑相关的神经系统疾病的认识日益提高,对增强药物筛选,诊断和基础研究的强大工具的需求比以往任何时候都大。具有高度代表性的中枢神经系统(CNS)模型可以在满足这些需求方面发挥关键作用。不幸的是,体内动物模型缺乏可控制性,难以监测,并且不能准确地模拟人类特定的大脑行为。另一方面,计算机模拟模型难以全面捕获相互交织的大脑生物,化学,电和机械复杂性。这给我们留下了有希望的“片上器官”体外模型领域。在这篇综述中,我们描述了这个不断扩展的领域中一些最开创性的工作,提供了对每种方法的新可能性以及局限性的看法。我们特别关注模型如何复制血脑屏障(BBB),该物质调节往返于脑组织的大量运输。我们还提供了有关评估这些体外模型的血脑屏障功能的策略的简短评论,包括跨内皮电阻(TEER),免疫细胞化学和通透性分析。从已发展为Transwell ®类设备的早期BBB膜模型,到微流控芯片时代和生物打印组织的未来,我们看到了可靠性方面的巨大改进体外模型。 BBB的越来越多的生物学和结构复杂性已被微流控芯片捕获,生物打印组织的器官特异性也得到了显着改善。尽管我们相信长期解决方案最终将采用自动化和并行化的生物打印系统的形式,但我们发现利用微流体平台已经可以完成有价值的运输研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号