首页> 美国卫生研究院文献>APA Open Access >Opposing Effects of Semantic Diversity in Lexical and Semantic Relatedness Decisions
【2h】

Opposing Effects of Semantic Diversity in Lexical and Semantic Relatedness Decisions

机译:语义多样性在词汇和语义相关性决策中的对立作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semantic ambiguity has often been divided into 2 forms: homonymy, referring to words with 2 unrelated interpretations (e.g., bark), and polysemy, referring to words associated with a number of varying but semantically linked uses (e.g., twist). Typically, polysemous words are thought of as having a fixed number of discrete definitions, or “senses,” with each use of the word corresponding to one of its senses. In this study, we investigated an alternative conception of polysemy, based on the idea that polysemous variation in meaning is a continuous, graded phenomenon that occurs as a function of contextual variation in word usage. We quantified this contextual variation using semantic diversity (SemD), a corpus-based measure of the degree to which a particular word is used in a diverse set of linguistic contexts. In line with other approaches to polysemy, we found a reaction time (RT) advantage for high SemD words in lexical decision, which occurred for words of both high and low imageability. When participants made semantic relatedness decisions to word pairs, however, responses were slower to high SemD pairs, irrespective of whether these were related or unrelated. Again, this result emerged irrespective of the imageability of the word. The latter result diverges from previous findings using homonyms, in which ambiguity effects have only been found for related word pairs. We argue that participants were slower to respond to high SemD words because their high contextual variability resulted in noisy, underspecified semantic representations that were more difficult to compare with one another. We demonstrated this principle in a connectionist computational model that was trained to activate distributed semantic representations from orthographic inputs. Greater variability in the orthography-to-semantic mappings of high SemD words resulted in a lower degree of similarity for related pairs of this type. At the same time, the representations of high SemD unrelated pairs were less distinct from one another. In addition, the model demonstrated more rapid semantic activation for high SemD words, thought to underpin the processing advantage in lexical decision. These results support the view that polysemous variation in word meaning can be conceptualized in terms of graded variation in distributed semantic representations.
机译:语义歧义通常分为两种形式:同义,指具有两种不相关解释的词(例如,树皮),多义性,指与许多不同但语义相关的用法(例如,扭曲)相关的词。通常,多义词被认为具有固定数量的离散定义或“感觉”,并且每次使用该词都对应于其含义之一。在这项研究中,我们研究了多义性的另一种概念,即多义意义的变化是一种连续的,分级的现象,这种现象是根据单词使用中的上下文变化而发生的。我们使用语义多样性(SemD)量化了这种上下文差异,语义多样性是一种基于语料库的度量,用于衡量特定单词在多种语言环境中的使用程度。与多义性的其他方法相一致,我们在词法决策中发现了高SemD词的反应时间(RT)优势,这对于具有高可成像性和低可成像性的词都适用。但是,当参与者对单词对做出语义相关性决策时,无论高低的SemD对,响应都较慢,无论它们是相关还是无关。同样,无论单词的可成像性如何,都会出现此结果。后者的结果与以前使用同音异义词的发现不同,在同义异义词中,仅对相关单词对发现歧义效应。我们认为,参与者对高SemD单词的反应较慢,因为他们的高上下文变异性导致嘈杂的,未指定的语义表示,很难相互比较。我们在连接主义的计算模型中证明了这一原理,该模型经过训练可以从正交输入中激活分布式语义表示。高SemD词的正字法到语义映射的较大变异性导致这种类型的相关对的相似度较低。同时,高SemD不相关对的表示彼此之间的区别也较小。此外,该模型还演示了针对高SemD单词的更快的语义激活,这被认为可以增强词汇决策中的处理优势。这些结果支持这样的观点,即可以根据分布式语义表示中的分级变化来概念化单词含义中的多义性变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号