首页> 美国卫生研究院文献>ACS AuthorChoice >Flooding Enzymes: Quantifying the Contributions ofInterstitial Water and Cavity Shape to Ligand Binding Using ExtendedLinear Response Free Energy Calculations
【2h】

Flooding Enzymes: Quantifying the Contributions ofInterstitial Water and Cavity Shape to Ligand Binding Using ExtendedLinear Response Free Energy Calculations

机译:淹水酶:量化的贡献间隙水和腔形状与配体结合使用扩展线性响应自由能计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Glutamate racemase (GR) is a cofactor independent amino acid racemase that has recently garnered increasing attention as an antimicrobial drug target. There are numerous high resolution crystal structures of GR, yet these are invariably bound to either d-glutamate or very weakly bound oxygen-based salts. Recent in silico screens have identified a number of new competitive inhibitor scaffolds, which are not based on d-Glu, but exploit many of the same hydrogen bond donor positions. In silico studies on 1-H-benzimidazole-2-sulfonic acid (BISA) show that the sulfonic acid points to the back of the GR active site, in the most buried region, analogous to the C2-carboxylate binding position in the GR-d-glutamate complex. Furthermore, BISA has been shown to be the strongest nonamino acid competitive inhibitor. Previously published computational studies have suggested that a portion of this binding strength is derived from complexation with a more closed active site, relative to weaker ligands, and in which the internal water network is more isolated from the bulk solvent.In order to validate key contacts between the buried sulfonate moietyof BISA and moieties in the back of the enzyme active site, as wellas to probe the energetic importance of the potentially large numberof interstitial waters contacted by the BISA scaffold, we have designedseveral mutants of Asn75. GR-N75A removes a key hydrogen bond donorto the sulfonate of BISA, but also serves to introduce an additionalinterstitial water, due to the newly created space of the mutation.GR- N75L should also show the loss of a hydrogen bond donor to thesulfonate of BISA, but does not (a priori) seem to permit an additionalinterstitial water contact. In order to investigate the dynamics,structure, and energies of this water-mediated complexation, we haveemployed the extended linear response (ELR) approach for the calculationof binding free energies to GR, using the YASARA2 knowledge basedforce field on a set of ten GR complexes, and yielding an R-squaredvalue of 0.85 and a RMSE of 2.0 kJ/mol. Surprisingly, the inhibitorset produces a uniformly large interstitial water contribution tothe electrostatic interaction energy (⟨Vel⟩), ranging from 30 to >50%, except for the naturalsubstrate (d-glutamate), which has only a 7% contributionof ⟨Vel⟩ from water. Thebroader implications for predicting and exploiting significant interstitialwater contacts in ligand–enzyme complexation are discussed.
机译:谷氨酸消旋酶(GR)是一种非辅因子的氨基酸消旋酶,最近作为抗微生物药物的目标已引起越来越多的关注。 GR有许多高分辨率的晶体结构,但它们始终与d-谷氨酸盐或非常弱地结合的基于氧的盐结合。最近的计算机筛选已鉴定出许多新的竞争性抑制剂支架,这些支架不是基于d-Glu,而是利用许多相同的氢键供体位置。在计算机上对1-H-苯并咪唑-2-磺酸(BISA)的研究表明,磺酸指向GR活性位点的后部(在最隐蔽的区域),类似于GR-中C2-羧酸酯的结合位置d-谷氨酸复合物。此外,已证明BISA是最强的非氨基酸竞争性抑制剂。先前发表的计算研究表明,相对于较弱的配体,这种结合强度的一部分来自与更封闭的活性位点的络合,并且内部水网与本体溶剂的分离度更高。为了验证掩埋的磺酸盐部分之间的关​​键接触酶活性位点背面的BISA和部分以探究潜在的巨大能量的重要性我们设计了BISA支架接触的间隙水Asn75的几个突变体。 GR-N75A去除了关键的氢键供体BISA的磺酸盐,但也可以引入其他间隙水,这是由于新创建的突变空间。GR-N75L还应显示氢键供体的损失BISA的磺酸盐,但似乎(先验)不允许间隙水接触。为了调查动态,水介导的络合物的结构和能量,我们有采用扩展线性响应(ELR)方法进行计算使用基于YASARA2的知识将自由能与GR结合一组十个GR复合物的力场,并得出R平方值为0.85,RMSE为2.0 kJ / mol。令人惊讶的是,抑制剂设置产生均匀大的间隙水贡献给静电相互作用能(⟨V el ⟩),范围为30%至> 50%,底物(d-谷氨酸),仅占7%水中的⟨V el ⟩的对预测和开发重大插页式广告具有更广泛的意义讨论了配体-酶复合过程中的水接触。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号