首页> 美国卫生研究院文献>ACS AuthorChoice >Analysis of Diffusion in Solid-StateElectrolytes through MD Simulations Improvement of the Li-Ion Conductivityin β-Li3PS4 as an Example
【2h】

Analysis of Diffusion in Solid-StateElectrolytes through MD Simulations Improvement of the Li-Ion Conductivityin β-Li3PS4 as an Example

机译:固态扩散分析通过MD模拟电解质提高锂离子电导率以β-Li3PS4为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Molecular dynamics simulations are a powerful tool to study diffusion processes in battery electrolyte and electrode materials. From molecular dynamics simulations, many properties relevant to diffusion can be obtained, including the diffusion path, amplitude of vibrations, jump rates, radial distribution functions, and collective diffusion processes. Here it is shown how the activation energies of different jumps and the attempt frequency can be obtained from a single molecular dynamics simulation. These detailed diffusion properties provide a thorough understanding of diffusion in solid electrolytes, and provide direction for the design of improved solid electrolyte materials. The presently developed analysis methodology is applied to DFT MD simulations of Li-ion diffusion in β-Li3PS4. The methodology presented is generally applicable to diffusion in crystalline materials and facilitates the analysis of molecular dynamics simulations. The code used for the analysis is freely available at: . The results on β–Li3PS4 demonstrate that jumps between bc planes limit the conductivity of this important class of solid electrolyte materials. The simulationsindicate that the rate-limiting jump process can be accelerated significantlyby adding Li interstitials or Li vacancies, promoting three-dimensionaldiffusion, which results in increased macroscopic Li-ion diffusivity.Li vacancies can be introduced through Br doping, which is predictedto result in an order of magnitude larger Li-ion conductivity in β–Li3PS4. Furthermore, the present simulations rationalizethe improved Li-ion diffusivity upon O doping through the change inLi distribution in the crystal. Thus, it is demonstrated how a thoroughunderstanding of diffusion, based on thorough analysis of MD simulations,helps to gain insight and develop strategies to improve the ionicconductivity of solid electrolytes.
机译:分子动力学模拟是研究电池电解质和电极材料中扩散过程的有力工具。通过分子动力学模拟,可以获得与扩散有关的许多特性,包括扩散路径,振动幅度,跳跃率,径向分布函数和集体扩散过程。在此显示了如何从单个分子动力学模拟中获得不同跳跃的激发能和尝试频率。这些详细的扩散特性提供了对固体电解质中扩散的透彻了解,并为改进的固体电解质材料的设计提供了方向。目前开发的分析方法应用于锂离子在β-Li3PS4中扩散的DFT MD模拟。提出的方法通常适用于晶体材料中的扩散,并有助于分子动力学模拟的分析。用于分析的代码可从以下位置免费获得:。在β–Li3PS4上的结果表明,bc平面之间的跳跃限制了这一重要类别的固体电解质材料的电导率。模拟表明限速跳跃过程可以显着加速通过添加李插页式广告或李空缺,提升三维扩散,导致宏观锂离子扩散率增加。可以通过Br掺杂引入Li空位,这是可以预测的导致在β–Li3PS4中更大的锂离子电导率。此外,目前的模拟合理化通过改变O掺杂,提高了锂离子的扩散性锂在晶体中分布。因此,证明了如何彻底基于对MD模拟的深入分析,了解扩散帮助获得见识并制定改善离子性的策略固体电解质的电导率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号