首页> 美国卫生研究院文献>AAPS PharmSci >Incorporation of Physiologically Based Pharmacokinetic Modeling in the Evaluation of Solubility Requirements for the Salt Selection Process: A Case Study Using Phenytoin
【2h】

Incorporation of Physiologically Based Pharmacokinetic Modeling in the Evaluation of Solubility Requirements for the Salt Selection Process: A Case Study Using Phenytoin

机译:基于生理的药代动力学模型在盐选择过程的溶解度要求评估中的应用:以苯妥英钠为例的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the pharmaceutical industry, salt is commonly used to improve the oral bioavailability of poorly soluble compounds. Currently, there is a limited understanding on the solubility requirement for salts that will translate to improvement in oral exposure. Despite the obvious need, there is very little research reported in this area mainly due to the complexity of such a system. To our knowledge, no report has been published to guide this important process and salt solubility requirement still remains unanswered. Physiologically based pharmacokinetic (PBPK) modeling offers a means to dynamically integrate the complex interplay of the processes determining oral absorption. A sensitivity analysis was performed using a PBPK model describing phenytoin to determine a solubility requirement for phenytoin salts needed to achieve optimal oral bioavailability for a given dose. Based on the analysis, it is predicted that phenytoin salts with solubility greater than 0.3 mg/mL would show no further increases in oral bioavailability. A salt screen was performed using a variety of phenytoin salts. The piperazine and sodium salts showed the lowest and highest aqueous solubility and were tested in vivo. Consistent with our analysis, we observed no significant differences in oral bioavailability for these two salts despite an approximate 60 fold difference in solubility. Our study illustrates that higher solubility salts sometimes provide no additional improvements in oral bioavailability and PBPK modeling can be utilized as an important tool to provide guidance to the salt selection and define a salt solubility requirement.Electronic supplementary materialThe online version of this article (doi:10.1208/s12248-013-9519-x) contains supplementary material, which is available to authorized users.
机译:在制药工业中,盐通常用于改善难溶性化合物的口服生物利用度。当前,对盐的溶解度要求的理解有限,这将转化为口服暴露的改善。尽管有明显的需求,但由于该系统的复杂性,在这一领域的研究很少。据我们所知,尚未发表任何报告来指导这一重要过程,盐溶解度要求仍未得到解答。基于生理学的药代动力学(PBPK)模型提供了一种动态整合确定口服吸收过程的复杂相互作用的方法。使用描述苯妥英钠的PBPK模型进行敏感性分析,以确定对于给定剂量达到最佳口服生物利用度所需的苯妥英钠盐的溶解度要求。根据分析,可以预见溶解度大于0.3 mg / mL的苯妥英盐将不会进一步提高口服生物利用度。使用多种苯妥英盐进行盐筛选。哌嗪和钠盐显示出最低和最高的水溶性,并在体内进行了测试。与我们的分析一致,我们发现这两种盐的口服生物利用度无明显差异,尽管溶解度相差约60倍。我们的研究表明,较高溶解度的盐有时无法提供口服生物利用度方面的其他改进,PBPK建模可以用作重要的工具,为盐的选择提供指导并定义盐的溶解度要求。电子补充材料本文的在线版本(doi: 10.1208 / s12248-013-9519-x)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号