首页> 中文期刊> 《自动化技术与应用》 >基于支持向量回归的年电力需求预测方法

基于支持向量回归的年电力需求预测方法

     

摘要

建立在统计学习理论(SLT)和结构风险最小化(SRM)准则基础上的支持向量机(SVM)在理论上能够很好地平衡学习精度和泛化能力之间的矛盾,支持向量机回归(SVR)是处理小样本数据回归建模的有利工具.文中提出应用SVR求解年电力需求预测问题,给出了求解问题的具体过程和方法,并对比研究了SVR和BP网络预测方法.预测结果表明应用SVR预测年电力需求,不仅易于实现,而且精度较高,性能明显优于BP网络方法.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号