首页> 中文期刊> 《稀有金属:英文版》 >Improvement of cycle behavior of Si/Sn anode composite supported by stable Si–O–C skeleton

Improvement of cycle behavior of Si/Sn anode composite supported by stable Si–O–C skeleton

         

摘要

A Si/Sn/SiOC/graphite(SSSG) composite with high efficiency and long-term cycling stability was synthesized by a cost-effective and scalable method, including the processes of mechanical milling and pyrolysis. The composite was characterized by X-ray diffraction(XRD),scanning electron microscope(SEM) and energy dispersive X-ray spectrometry(EDX). The electrochemical properties were investigated until the 25th cycle. As a result, the SSSG composite anode exhibits excellent long-term cycling stability and capacity. Such SSSG composite anode shows excellent cycling stability with a specific capacity of 568.2 mAh·g^(-1) and ~80% capacity retention over 25 cycles at 0.3C rate. The reasons for good electrochemical characteristics are considered that the SiOC net with favorable chemical stability acts as a skeleton to support and segregate Si/Sn nanostructures, and the graphitic mixing in the composite is used as conductive material to enhance the electrical conductivity in this composite. The results suggest that the design of this new structure has the potential to provide a way for the other functional composite materials.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号