In this paper, we investigate the Ishikawa iteration process in a p-uniformly smooth Banach space X. We prove that the Ishikawa iteration process converges strongly to the unique solution of the equation Tx=f when T is a Lipschitzian and strongly accretive operator frow X to X, or to the unique fixed point of T when T is a Lipschitzian and strictly pseudocontractive mapping from a nonempty closed convex subset K of X into itself. Our results are the extension and improvements of the earlier and recent results in this field.
展开▼