A new stabilized finite element method which is different from Hughes and Franco’s (1988) is presented for the Reissner-Mindlin plate model. The least square mesh-dependent residual form of the shear constitute equation is added to the Partial Projection scheme to enhance the stability. Using piecewise polynomials of order k≥1 for the rotations, of order k+1 for the displacement and of order k-1 for the shear, the kth order error-estimates are obtained. Besides, our computing scheme can be also applied to some lower order elements. All error-estimates are obtained independent of the plate thickness, and the stability parameter is an arbitrary positive constant.
展开▼