首页> 中文期刊> 《高等学校计算数学学报:英文版》 >STABILIZED FINITE ELEMENT METHODS FOR THE REISSNER-MINDLIN PLATE

STABILIZED FINITE ELEMENT METHODS FOR THE REISSNER-MINDLIN PLATE

     

摘要

A new stabilized finite element method which is different from Hughes and Franco’s (1988) is presented for the Reissner-Mindlin plate model. The least square mesh-dependent residual form of the shear constitute equation is added to the Partial Projection scheme to enhance the stability. Using piecewise polynomials of order k≥1 for the rotations, of order k+1 for the displacement and of order k-1 for the shear, the kth order error-estimates are obtained. Besides, our computing scheme can be also applied to some lower order elements. All error-estimates are obtained independent of the plate thickness, and the stability parameter is an arbitrary positive constant.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号