首页> 中文期刊> 《高等学校计算数学学报:英文版》 >Three-Dimensional Finite Element Superconvergent Gradient Recovery on Par6 Patterns

Three-Dimensional Finite Element Superconvergent Gradient Recovery on Par6 Patterns

     

摘要

In this paper,we present a theoretical analysis for linear finite element superconvergent gradient recovery on Par6 mesh,the dual of which is centroidal Voronoi tessellations with the lowest energy per unit volume and is the congruent cell predicted by the three-dimensional Gersho's conjecture.We show that the linear finite element solution u_h and the linear interpolation u_1 have superclose gradient on Par6 meshes. Consequently,the gradient recovered from the finite element solution by using the superconvergence patch recovery method is superconvergent to▽u.A numerical example is presented to verify the theoretical result.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号