首页> 中文期刊> 《高等学校计算数学学报:英文版》 >MULTILEVEL AUGMENTATION METHODS FOR SOLVING OPERATOR EQUATIONS

MULTILEVEL AUGMENTATION METHODS FOR SOLVING OPERATOR EQUATIONS

     

摘要

We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstrate the efficiency and accuracy of the methods. In these examples we use the proposed augmentation method to solve large scale linear systems resulting from the recently developed wavelet Galerkin methods and fast collocation methods applied to integral equations of the secondkind. Our numerical results confirm that this augmentation method is particularly efficient for solving large scale linear systems induced from wavelet compression schemes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号