首页> 中文期刊> 《高等学校计算数学学报:英文版》 >Fully Discrete Galerkin Finite Element Method for the Cubic Nonlinear Schr(o)dinger Equation

Fully Discrete Galerkin Finite Element Method for the Cubic Nonlinear Schr(o)dinger Equation

     

摘要

This paper is concemed with numerical method for a two-dimensional timedependent cubic nonlinear Schr(o)dinger equation.The approximations are obtained by the Galerkin finite element method in space in conjunction with the backward Euler method and the Crank-Nicolson method in time,respectively.We prove optimal L2 error estimates for two fully discrete schemes by using elliptic projection operator.Finally,a numerical example is provided to verify our theoretical results.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号