首页> 中文期刊> 《组合机床与自动化加工技术》 >基于粒子群算法的机床支承件r不确定性多目标优化

基于粒子群算法的机床支承件r不确定性多目标优化

     

摘要

A machine tool support multiobjective optimization method based on uncertainty analysis has been proposed, in which the uncertainty of support density, modulus and cutting loads are considered. A case study on a particular type of machine tool spindle box has been carried out using this method. First, the optimization variables are selected out based on the sensitivity analysis of spindle box feature sizes relative to the cutting point displacement and the column weight. Then the approximation models of cutting point displacement, spindle box weight and spindle box first inherent frequency are established. Next, the objective function of the optimization problem is built by considering robustness, with the spindle box first inherent frequency as the constraint. By adopting particle swarm optimization algorithm, the spindle box multiobjective optimization problem is solved. Finally, the optimal solution set of cutting point displacement decreasing and spindle box weight losing is obtained which satisfies the given frequency request.%考虑支承件材料密度、弹性模量以及切削载荷的不确定性,提出基于不确定性分析的支承件多目标优化设计方法.以某型号机床主轴箱为例,基于灵敏度分析方法选取对切削点位移和主轴箱重量影响较大的特征尺寸作为优化变量;以支持向量机方法构建切削点位移、主轴箱重量和主轴箱一阶固有频率的近似模型;基于稳健性考虑建立优化问题目标函数,以主轴箱固有频率为约束,利用粒子群算法对此多目标优化问题进行优化.优化结果在满足设定频率要求的前提下,得到切削点位移减小和主轴箱重量减轻的最优解集.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号