首页> 中文期刊> 《现代电子技术》 >SW-SAN:基于Seq2Seq结合注意力机制与滑动窗口的车辆轨迹预测模型

SW-SAN:基于Seq2Seq结合注意力机制与滑动窗口的车辆轨迹预测模型

     

摘要

针对长时间内4~5 s车辆轨迹预测精度较差的问题,提出基于Seq2Seq结合注意力机制与滑动窗口的车辆轨迹预测模型(SW-SAN)。首先,使用滑动窗口的方法更新历史轨迹状态集合,利用编码器对目标车辆的历史轨迹数据编码,得到历史轨迹特征向量;其次,经过注意力机制计算历史时间内各时刻的关联性得分、时间注意力权重因子和历史时间相关性特征向量;最后,解码器将历史时间相关性特征向量作为输入,多次循环解码层,输出目标车辆的未来预测轨迹。实验结果表明,SW-SAN模型在4 s和5 s时预测轨迹的RMSE误差为1.99 m和1.94 m,SW-SAN模型在较长时间4~5 s的预测误差更低,在车辆轨迹预测问题上性能更强。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号