首页> 中文期刊> 《建模与仿真》 >一种自适应的分布式深度神经网络推理框架

一种自适应的分布式深度神经网络推理框架

     

摘要

近年来,随着深度学习的发展,深度神经网络(Deep Neural Network,DNN)模型变得越来越复杂,所需的内存和数据传输量也随之增大,这不仅降低了DNN的训练和推理速度,也限制了DNN在一些内存较小、计算能力较差的物联网(Internet of Things,IoT)设备上的部署。现有研究将基于云–边–端协同的分布式计算框架与深度神经网络相结合,组成了分布式深度神经网络(Distributed Deep Neural Network,DDNN)框架,该框架在IoT应用场景下有着显著的优势。然而,DDNN框架存在设备的计算能力有限、以及设备之间的传输成本较高等问题。针对上述问题,本文提出了自适应的分布式深度神经网络(Adaptive Distributed Deep Neural Network,ADA-DDNN)推理框架。ADA-DDNN框架采用了多个边缘出口,这些边缘出口允许ADA-DDNN框架中的模型在不同的深度层次上进行自适应地推理,以适应不同的任务需求和数据特性。此外,该框架增加了额外的边缘处理模块,边缘处理模块可以在边缘端进行特征融合之前,判断每个终端模块的输出结果是否可信,若可信,则直接输出分类结果,无需进行特征融合和后续计算。这大大增加了样本的边缘出口概率,减少了后续的计算成本。本文在开放的CIFAR-10数据集上进行验证,实验结果表明,ADD-DDNN框架在保证云端测试精度的前提下,显著提升了边缘测试精度。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号