首页> 中文期刊> 《建模与仿真》 >基于卷积神经网络的乳腺癌病理图像分类

基于卷积神经网络的乳腺癌病理图像分类

     

摘要

乳腺癌已经超过肺癌,成为世界第一大癌症。因此,乳腺癌的诊断就显得十分重要。为了提高对乳腺癌病理图像分类的准确率,提出了一种基于卷积神经网络的诊断方法。这种方法的出现,能做到快速对乳腺癌病理图像进行良恶性分类。一般来说,乳腺癌的病理图像结构十分复杂,为了增强网络的特征提取的能力,在卷积神经网络的基础上引进随机函数链神经网络和CA注意力机制。因为乳腺癌数据集太少,使用数据增强去扩充数据集。分别进行横向实验与消融实验,实验结果表明,优化后的卷积神经网络能有效提高分类的准确率。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号