首页> 中文期刊> 《微型电脑应用》 >基于Spark-ML+Conv-LSTM的混合入侵检测系统

基于Spark-ML+Conv-LSTM的混合入侵检测系统

     

摘要

为了提高网络入侵检测的准确率,提出了基于Spark-ML分类器和卷积LSTM(Conv-LSTM)网络的两阶段混合入侵检测系统(IDS).采用Spark-ML分类器构建异常流量检测模块,结合Conv-LSTM网络建立恶意攻击检测模块,兼顾了网络流量的特征提取和入侵类别的深度分析,实现了全局和局部潜在威胁特征的准确识别.通过ISCX 2012数据集进行验证,验证结果表明:所提出的混合IDS能够在97.29%的情况下准确地识别网络入侵,在10倍交叉验证测试中优于其他检测方法,并且具有较高的精确度和较低的误报率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号