首页> 中文期刊> 《网络安全与数据治理》 >基于双域学习的JPEG压缩图像去压缩效应算法

基于双域学习的JPEG压缩图像去压缩效应算法

     

摘要

针对JPEG压缩图像存在的压缩伪影,提出了一种基于双域学习的JPEG压缩图像去压缩效应算法,以使压缩图像达到更好的视觉效果。该算法利用深度卷积神经网络,根据JPEG压缩图像的特点,分别在像素域和DCT变换域对压缩图像进行去噪,最后将双域的学习信息进行有效融合,以达到更好的去块效应效果。所提出的卷积神经网络使用宽激活残差块(Wide-activation Residual Block,WARB)作为结构单元,能在有效提升网络预测性能的同时,不引入更多的网络参数和计算量。实验结果表明,相比于目前先进的去压缩效应算法,所提出的JPEG压缩图像去压缩效应算法能在主客观上均获得更好的性能。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号